316 research outputs found

    Comment on "Transverse Force on a Quantized Vortex in a Superfluid"

    Full text link
    The result of Thouless, Ao and Niu (TAN), that the mutual friction parameter d⊥=0d_\perp =0, contradicts to the experiments made in rotating 3He-B by Manchester group. The Manchester group observed that d⊥<0d_\perp <0 at low temperature and approaches 1 at high temperature. The reason of the contradiction is that TAN did not take into account the Iordanskii force on the vortex and the spectral flow force, which comes from the anomaly related to the low-energy bound states of fermions in cores of quantized vortices. The Iordanskii force is responsible for the negative d⊥<0d_\perp <0 at low temperature, while due to the spectral flow d⊥d_\perp approaches 1 at high temperature. Relation of the spectral flow anomaly with the paradoxes of the linear and angular momenta in gapless superfluids is discussed.Comment: revtex, 2 pages, submitted to Physical Review Letters as "Comment" to the paper D.J. Thouless, P. Ao and Q. Niu, Phys. Rev. Lett. 76, 3758 (1996

    Superfluid Spin-down, with Random Unpinning of the Vortices

    Full text link
    The so-called ``creeping'' motion of the pinned vortices in a rotating superfluid involves ``random unpinning'' and ``vortex motion'' as two physically separate processes. We argue that such a creeping motion of the vortices need not be (biased) in the direction of an existing radial Magnus force, nor should a constant microscopic radial velocity be assigned to the vortex motion, in contradiction with the basic assumptions of the ``vortex creep'' model. We point out internal inconsistencies in the predictions of this model which arise due to this unjustified foundation that ignores the role of the actual torque on the superfluid. The proper spin-down rate of a pinned superfluid is then calculated and turns out to be much less than that suggested in the vortex creep model, hence being of even less observational significance for its possible application in explaining the post-glitch relaxations of the radio pulsars.Comment: To be published in J. Low Temp. Phys., Vol. 139, May 2005 [Eqs 11, 15-17 here, have been revised and, may be substituted for the corresponding ones in that paper

    Nuclear exchange of the U1 and U2 snRNP-specific proteins.

    Full text link

    Quantum vortices in systems obeying a generalized exclusion principle

    Full text link
    The paper deals with a planar particle system obeying a generalized exclusion principle (EP) and governed, in the mean field approximation, by a nonlinear Schroedinger equation. We show that the EP involves a mathematically simple and physically transparent mechanism, which allows the genesis of quantum vortices in the system. We obtain in a closed form the shape of the vortices and investigate its main physical properties. PACS numbers: 03.65.-w, 03.65.Ge, 05.45.YvComment: 7 pages, 4 figure

    Internal avalanches in a pile of superconducting vortices

    Full text link
    Using an array of miniature Hall probes, we monitored the spatiotemporal variation of the internal magnetic induction in a superconducting niobium sample during a slow sweep of external magnetic field. We found that a sizable fraction of the increase in the local vortex population occurs in abrupt jumps. The size distribution of these avalanches presents a power-law collapse on a limited range. In contrast, at low temperatures and low fields, huge avalanches with a typical size occur and the system does not display a well-defined macroscopic critical current.Comment: 5 pages including 5 figure

    Theory of "ferrisuperconductivity" in U1−xThxBe13U_{1-x}Th_xBe_{13}

    Full text link
    We construct a two component Ginzburg-Landau theory with coherent pair motion and incoherent quasiparticles for the phase diagram of U1−xThxBe13U_{1-x}Th_xBe_{13}. The two staggered superconducting states live at the Brillouin zone center and the zone boundary, and coexist for temperatures T≤Tc2T\le T_{c2} at concentrations xc1≈0.02≤x≤xc2≈0.04x_{c1}\approx 0.02\le x \le x_{c2}\approx 0.04. We predict below Tc2T_{c2} appearance of a charge density wave (CDW) and Be-sublattice distortion. The distortion explains the μ\muSR relaxation anomaly, and Th-impurity mediated scattering of ultrasound to CDW fluctuations explains the attenuation peak.Comment: 4 pages, 4 eps figures, REVTe
    • …
    corecore