3,414 research outputs found

    Temporal variability in early afterglows of short gamma-ray bursts

    Full text link
    The shock model has successfully explained the observed behaviors of afterglows from long gamma-ray bursts (GRBs). Here we use it to investigate the so-called early afterglows from short GRBs, which arises from blast waves that are not decelerated considerably by their surrounding medium. We consider a nearby medium loaded with e±e^{\pm} pairs (Beloborodov 2002). The temporal behaviors show first a soft-to-hard spectral evolution, from the optical to hard X-ray, and then a usual hard-to-soft evolution after the blast waves begin to decelerate. The light curves show variability, and consist of two peaks. The first peak, due to the pair effect, can be observed in the X-ray, though too faint and too short in the optical. The second peak will be easily detected by {\it Swift}. We show that detections of the double-peak structure in the light curves of early afterglows are very helpful to determine all the shock parameters of short GRBs, including both the parameters of the relativistic source and the surroundings. Besides, from the requirement that the forward-shock emission in short GRBs should be below the BATSE detection threshold, we give a strong constraint on the shock model parameters. In particular, the initial Lorentz factor of the source is limited to be no more than ∼103\sim 10^3, and the ambient medium density is inferred to be low, n\la 10^{-1} cm−3^{-3}.Comment: 5 pages, 1 figure, minor changes to match the publish in MNRA

    Comparative study of microwave radiation-induced magnetoresistive oscillations induced by circularly- and linearly- polarized photo-excitation

    Full text link
    A comparative study of the radiation-induced magnetoresistance oscillations in the high mobility GaAs/AlGaAs heterostructure two dimensional electron system (2DES) under linearly- and circularlypolarized microwave excitation indicates a profound difference in the response observed upon rotating the microwave launcher for the two cases, although circularly polarized microwave radiation induced magnetoresistance oscillations observed at low magnetic fields are similar to the oscillations observed with linearly polarized radiation. For the linearly polarized radiation, the magnetoresistive response is a strong sinusoidal function of the launcher rotation (or linear polarization) angle, {\theta}. For circularly polarized radiation, the oscillatory magnetoresistive response is hardly sensitive to {\theta}

    Scheme for preparation of W state via cavity QED

    Full text link
    In this paper, we presented a physical scheme to generate the multi-cavity maximally entangled W state via cavity QED. All the operations needed in this scheme are to modulate the interaction time only once.Comment: 8 pages, 1 figur

    Pair loading in Gamma-Ray Burst Fireball And Prompt Emission From Pair-Rich Reverse Shock

    Full text link
    Gamma-ray bursts (GRBs) are believed to originate from ultra-relativistic winds/fireballs to avoid the "compactness problem". However, the most energetic photons in GRBs may still suffer from γ−γ\gamma-\gamma absorption leading to electron/positron pair production in the winds/fireballs. We show here that in a wide range of model parameters, the resulting pairs may dominate those electrons associated with baryons. Later on, the pairs would be carried into a reverse shock so that a shocked pair-rich fireball may produce a strong flash at lower frequencies, i.e. in the IR band, in contrast with optical/UV emission from a pair-poor fireball. The IR emission would show a 5/2 spectral index due to strong self-absorption. Rapid responses to GRB triggers in the IR band would detect such strong flashes. The future detections of many IR flashes will infer that the rarity of prompt optical/UV emissions is in fact due to dust obscuration in the star formation regions.Comment: 8 pages, 2 figures, ApJ accepte
    • …
    corecore