994 research outputs found

    Single-walled carbon nanotube bundle under hydrostatic pressure studied by the first-principles calculations

    Full text link
    The structural, electronic, optical and vibrational properties of the collapsed (10,10) single-walled carbon nanotube bundle under hydrostatic pressure have been studied by the first-principles calculations. Some features are observed in the present study: First, a collapsed structure is found, which is distinct from both of the herringbone and parallel structures obtained previously. Secondly, a pseudo-gap induced by the collapse appears along the symmetry axis \textit{Γ\Gamma X}. Thirdly, the relative orientation between the collapsed tubes has an important effect on their electronic, optical and vibrational properties, which provides an efficient experimental method to distinguish unambiguously three different collapsed structures.Comment: 14 pages, 6 figure

    Geometrical and electronic structures of the (5, 3) single-walled gold nanotube from first-principles calculations

    Full text link
    The geometrical and electronic structures of the 4 {\AA} diameter perfect and deformed (5, 3) single-walled gold nanotube (SWGT) have been studied based upon the density-functional theory in the local-density approximation (LDA). The calculated relaxed geometries show clearly significant deviations from those of the ideally rolled triangular gold sheet. It is found that the different strains have different effects on the electronic structures and density of states of the SWGTs. And the small shear strain can reduce the binding energy per gold atom of the deformed SWGT, which is consistent with the experimentally observed result. Finally, we found the finite SWGT can show the metal-semiconductor transition.Comment: 11 pages, 4 figure

    Simultaneous Metal-Insulator and Antiferromagnetic Transitions in Orthorhombic Perovskite Iridate Sr0.94Ir0.78O2.68 Single Crystals

    Get PDF
    The orthorhombic perovskite SrIrO3 is a semimetal, an intriguing exception in iridates where the strong spin-orbit interaction coupled with electron correlations tends to impose a novel insulating state. We report results of our investigation of bulk single-crystal Sr0.94Ir0.78O2.68 or Ir-deficient, orthorhombic perovskite SrIrO3. It retains the same crystal structure as stoichiometric SrIrO3 but exhibits a sharp, simultaneous antiferromagnetic (AFM) and metal-insulator (MI) transition at 185 K. Above it, the basal-plane resistivity features an extended regime of almost linear-temperature dependence up to 800 K but the strong electronic anisotropy renders an insulating behavior in the out-of-plane resistivity. The Hall resistivity undergoes an abrupt sign change and grows below 40 K, which along with the Sommerfeld constant of 20 mJ/mole K2 suggests a multiband effect. All results including our first-principles calculations underscore a delicacy of the metallic state in SrIrO3 that is in close proximity to an AFM insulating state. The contrasting ground states in isostructural Sr0.94Ir0.78O2.68 and SrIrO3 illustrate a critical role of even slight lattice distortions in rebalancing the ground state in the iridates. Finally, the observed simultaneous AFM and MI transitions reveal a direct correlation between the magnetic transition and formation of a charge gap in the iridate, which is conspicuously absent in Sr2IrO4.Comment: 5 figure

    Quantum Dot in Z-shaped Graphene Nanoribbon

    Full text link
    Stimulated by recent advances in isolating graphene, we discovered that quantum dot can be trapped in Z-shaped graphene nanoribbon junciton. The topological structure of the junction can confine electronic states completely. By varying junction length, we can alter the spatial confinement and the number of discrete levels within the junction. In addition, quantum dot can be realized regardless of substrate induced static disorder or irregular edges of the junction. This device can be used to easily design quantum dot devices. This platform can also be used to design zero-dimensional functional nanoscale electronic devices using graphene ribbons.Comment: 4 pages, 3 figure

    Structure symmetry determination and magnetic evolution in Sr2Ir1−xRhxO4\rm Sr_2Ir_{1-x}Rh_{x}O_4

    Get PDF
    We use single-crystal neutron diffraction to determine the crystal structure symmetry and the magnetic evolution in the rhodium doped iridates Sr2Ir1−xRhxO4\rm Sr_2Ir_{1-x}Rh_{x}O_4 (0≤x≤0.160\leq x \leq 0.16). Throughout this doping range, the crystal structure retains a tetragonal symmetry (space group I41/aI4_1/a) with two distinct magnetic Ir sites in the unit cell forming staggered IrO6\rm IrO_6 rotation. Upon Rh doping, the magnetic order is suppressed and the magnetic moment of Ir4+^{4+} is reduced from 0.21 μB\rm \mu_B/Ir for x=0x=0 to 0.18 μB\rm \mu_B/Ir for x=0.12x=0.12. The magnetic structure at x=0.12x=0.12 is different from that of the parent compound while the moments remain in the basal plane.Comment: Accepted for publication in Phys. Rev.

    Average Density of States in Disordered Graphene systems

    Full text link
    In this paper, the average density of states (ADOS) with a binary alloy disorder in disordered graphene systems are calculated based on the recursion method. We observe an obvious resonant peak caused by interactions with surrounding impurities and an anti-resonance dip in ADOS curves near the Dirac point. We also find that the resonance energy (Er) and the dip position are sensitive to the concentration of disorders (x) and their on-site potentials (v). An linear relation, not only holds when the impurity concentration is low but this relation can be further extended to high impurity concentration regime with certain constraints. We also calculate the ADOS with a finite density of vacancies and compare our results with the previous theoretical results.Comment: 10 pages, 8 figure

    Modeling and Representation of Geometric Tolerances Information in Integrated Measurement Processes

    Get PDF
    Modeling and representation of geometric tolerances information across an enterprise is viable due to the advances in Internet technologies and increasing integration requirements from industry. In Integrated Measurement Processes (IMP), geometric tolerances data model must support different models from several well-defined standards: including ASME Y14.5M-1994, STEP, DMIS, and others. In this paper, we propose a layered conformance level geometric tolerances representation model. This model uses the widely applied ASME Y14.5M-1994 as its foundation layer by abstracting most information from this standard. The additional geometric tolerances information defined by DMIS and STEP is incorporated into this model to form corresponding conformance layers that support IMP. Thus, different application domains in an enterprise can use this data model to exchange product information. This model is further transformed with XML Schema that can be used to generate XML instance file to satisfy geometric tolerances representation requirements in IMP
    • …
    corecore