56 research outputs found

    Cumulate causes for the low contents of sulfide-loving elements in the continental crust

    Get PDF
    Despite the economic importance of chalcophile (sulfide-loving) and siderophile (metal-loving) elements (CSEs), it is unclear how they become enriched or depleted in the continental crust, compared with the oceanic crust. This is due in part to our limited understanding of the partitioning behaviour of the CSEs. Here I compile compositional data for mid-ocean ridge basalts and subduction-related volcanic rocks. I show that the mantle-derived melts that contribute to oceanic and continental crust formation rarely avoid sulfide saturation during cooling in the crust and, on average, subduction-zone magmas fractionate sulfide at the base of the continental crust prior to ascent. Differentiation of mantle-derived melts enriches lower crustal sulfide- and silicate-bearing cumulates in some CSEs compared with the upper crust. This storage predisposes the cumulate-hosted compatible CSEs (such as Cu and Au) to be recycled back into the mantle during subduction and delamination, resulting in their low contents in the bulk continental crust and potentially contributing to the scarcity of ore deposits in the upper continental crust. By contrast, differentiation causes the upper oceanic and continental crust to become enriched in incompatible CSEs (such as W) compared with the lower oceanic and continental crust. Consequently, incompatible CSEs are predisposed to become enriched in subduction-zone magmas that contribute to continental crust formation and are less susceptible to removal from the continental crust via delamination compared with the compatible CSEs

    Hf–Zr anomalies in clinopyroxene from mantle xenoliths from France and Poland: implications for Lu–Hf dating of spinel peridotite lithospheric mantle

    Get PDF
    Clinopyroxenes in some fresh anhydrous spinel peridotite mantle xenoliths from the northern Massif Central (France) and Lower Silesia (Poland), analysed for a range of incompatible trace elements by laser ablation inductively coupled plasma mass spectrometry, show unusually strong negative anomalies in Hf and Zr relative to adjacent elements Sm and Nd, on primitive mantle-normalised diagrams. Similar Zr–Hf anomalies have only rarely been reported from clinopyroxene in spinel peridotite mantle xenoliths worldwide, and most are not as strong as the examples reported here. Low Hf contents give rise to a wide range of Lu/Hf ratios, which over geological time would result in highly radiogenic εHf values, decoupling them from εNd ratios. The high 176Lu/177Hf could in theory produce an isochronous relationship with 176Hf/177Hf over time; an errorchron is shown by clinopyroxene from mantle xenoliths from the northern Massif Central. However, in a review of the literature, we show that most mantle spinel peridotites do not show such high Lu/Hf ratios in their constituent clinopyroxenes, because they lack the distinctive Zr–Hf anomaly, and this limits the usefulness of the application of the Lu–Hf system of dating to garnet-free mantle rocks. Nevertheless, some mantle xenoliths from Poland or the Czech Republic may be amenable to Hf-isotope dating in the future

    The effect of temperature on the equilibrium distribution of trace elements between clinopyroxene, orthopyroxene, olivine and spinel in upper mantle peridotite

    No full text
    The abundance of 30 trace elements has been determined in the minerals of 16 well-equilibrated spinel lherzolite xenoliths by laser-ablation inductively-coupled-plasma mass-spectrometry (LA-ICP-MS). Major elements were analysed by electron microprobe. The xenoliths span a range of equilibration temperatures from 1150 to 1500 K (calculated at an assumed pressure of 1.5 GPa from two-pyroxene geothermometry), allowing the trace-element partitioning relationships among the phases (olivine, orthopyroxene, clinopyroxene, spinel, and in some lower temperature xenoliths, amphibole) to be quantified as a function of temperature. Most elements show smooth partitioning trends among all phases that depend primarily on temperature but with some influences from bulk composition, particularly the amount of Na in clinopyroxene. Although most incompatible trace elements are concentrated into clinopyroxene, the effect of increasing temperature is to redistribute these elements into orthopyroxene and even olivine, such that these latter phases hold non-negligible proportions of many trace elements at the temperature at which peridotite would be in equilibrium with basaltic melts. The inter-crystalline trace-element partition coefficients reported in this study can be used to reconstruct the trace-element abundances in clinopyroxene at melting temperatures, and should also prove useful in elucidating the histories of more complex mantle peridotites with unequilibrated mineral compositions and textures
    • …
    corecore