87 research outputs found
Macular and serum carotenoid concentrations in patients with malabsorption syndromes
The carotenoids lutein and zeaxanthin are believed to protect the human macula by absorbing blue light and quenching free radicals. Intestinal malabsorption syndromes such as celiac and Crohn’s disease are known to cause deficiencies of lipid-soluble nutrients. We hypothesized that subjects with nutrient malabsorption syndromes will demonstrate lower carotenoid levels in the macula and blood, and that these lower levels may correlate with early-onset maculopathy. Resonance Raman spectrographic (RRS) measurements of macular carotenoid levels were collected from subjects with and without a history of malabsorption syndromes. Carotenoids were extracted from serum and analyzed by high performance liquid chromatography (HPLC). Subjects with malabsorption (n = 22) had 37% lower levels of macular carotenoids on average versus controls (n = 25, P < 0.001). Malabsorption was not associated with decreased serum carotenoid levels. Convincing signs of early maculopathy were not observed. We conclude that intestinal malabsorption results in lower macular carotenoid levels
Rod and Cone Pathway Signalling Is Altered in the P2X7 Receptor Knock Out Mouse
The P2X7 receptor (P2X7-R) is expressed in the retina and brain and has been implicated in neurodegenerative diseases. However, whether it is expressed by neurons and plays a role as a neurotransmitter receptor has been the subject of controversy. In this study, we first show that the novel vesicular transporter for ATP, VNUT, is expressed in the retina, verifying the presence of the molecular machinery for ATP to act as neurotransmitter at P2X7-Rs. Secondly we show the presence of P2X7-R mRNA and protein in the retina and cortex and absence of the full length variant 1 of the receptor in the P2X7-R knock out (P2X7-KO) mouse. The role of the P2X7-R in neuronal function of the retina was assessed by comparing the electroretinogram response of P2X7-KO with WT mice. The rod photoreceptor response was found to be similar, while both rod and cone pathway post-photoreceptor responses were significantly larger in P2X7-KO mice. This suggests that activation of P2X7-Rs modulates output of second order retinal neurons. In line with this finding, P2X7-Rs were found in the outer plexiform layer and on inner retinal cell classes, including horizontal, amacrine and ganglion cells. The receptor co-localized with conventional synapses in the IPL and was expressed on amacrine cells post-synaptic to rod bipolar ribbon synapses. In view of the changes in visual function in the P2X7-KO mouse and the immunocytochemical location of the receptor in the normal retina, it is likely the P2X7-R provides excitatory input to photoreceptor terminals or to inhibitory cells that shape both the rod and cone pathway response
TGF-β Is Required for Vascular Barrier Function, Endothelial Survival and Homeostasis of the Adult Microvasculature
Pericyte-endothelial cell (EC) interactions are critical to both vascular development and vessel stability. We have previously shown that TGF-β signaling between EC and mural cells participates in vessel stabilization in vitro. We therefore investigated the role of TGF-β signaling in maintaining microvessel structure and function in the adult mouse retinal microvasculature. TGF-β signaling was inhibited by systemic expression of soluble endoglin (sEng) and inhibition was demonstrated by reduced phospho-smad2 in the adult retina. Blockade of TGF-β signaling led to increased vascular and neural cell apoptosis in the retina, which was associated with decreased retinal function, as measured by electroretinogram (ERG). Perfusion of the inner retinal vasculature was impaired and was accompanied by defective autoregulation and loss of capillary integrity. Fundus angiography and Evans blue permeability assay revealed a breakdown of the blood-retinal-barrier that was characterized by decreased association between the tight junction proteins zo-1 and occludin. Inhibition of TGF-β signaling in cocultures of EC and 10T1/2 cells corroborated the in vivo findings, with impaired EC barrier function, dissociation of EC from 10T1/2 cells, and endothelial cell death, supporting the role of EC-mesenchymal interactions in TGF-β signaling. These results implicate constitutive TGF-β signaling in maintaining the integrity and function of the adult microvasculature and shed light on the potential role of TGF-β signaling in vasoproliferative and vascular degenerative retinal diseases
Can Preening Contribute to Influenza A Virus Infection in Wild Waterbirds?
Wild aquatic birds in the Orders Anseriformes and Charadriiformes are the main reservoir hosts perpetuating the genetic pool of all influenza A viruses, including pandemic viruses. High viral loads in feces of infected birds permit a fecal-oral route of transmission. Numerous studies have reported the isolation of avian influenza viruses (AIVs) from surface water at aquatic bird habitats. These isolations indicate aquatic environments have an important role in the transmission of AIV among wild aquatic birds. However, the progressive dilution of infectious feces in water could decrease the likelihood of virus/host interactions. To evaluate whether alternate mechanisms facilitate AIV transmission in aquatic bird populations, we investigated whether the preen oil gland secretions by which all aquatic birds make their feathers waterproof could support a natural mechanism that concentrates AIVs from water onto birds' bodies, thus, representing a possible source of infection by preening activity. We consistently detected both viral RNA and infectious AIVs on swabs of preened feathers of 345 wild mallards by using reverse transcription–polymerase chain reaction (RT-PCR) and virus-isolation (VI) assays. Additionally, in two laboratory experiments using a quantitative real-time (qR) RT-PCR assay, we demonstrated that feather samples (n = 5) and cotton swabs (n = 24) experimentally impregnated with preen oil, when soaked in AIV-contaminated waters, attracted and concentrated AIVs on their surfaces. The data presented herein provide information that expands our understanding of AIV ecology in the wild bird reservoir system
Amyloid Precursor Protein Is Required for Normal Function of the Rod and Cone Pathways in the Mouse Retina
Amyloid precursor protein (APP) is a transmembrane glycoprotein frequently studied for its role in Alzheimer's disease. Our recent study in APP knockout (KO) mice identified an important role for APP in modulating normal neuronal development in the retina. However the role APP plays in the adult retina and whether it is required for vision is unknown. In this study we evaluated the role of APP in retinal function and morphology comparing adult wildtype (WT) and APP-KO mice. APP was expressed on neuronal cells of the inner retina, including horizontal, cone bipolar, amacrine and ganglion cells in WT mice. The function of the retina was assessed using the electroretinogram and although the rod photoreceptor responses were similar in APP-KO and WT mice, the post-photoreceptor, inner retinal responses of both the rod and cone pathways were reduced in APP-KO mice. These changes in inner retinal function did not translate to a substantial change in visual acuity as assessed using the optokinetic response or to changes in the gross cellular structure of the retina. These findings indicate that APP is not required for basic visual function, but that it is involved in modulating inner retinal circuitry
A method for the estimation of the service life of a precision guiding interface "needle - Nozzle Body" of a common-rail-injector for high rail pressures
The analysis of type and form of the loading in the guidance between the needle and body of a CR-injector, as well as the transformation of friction energy on the contact surfaces which absorbs mechanical and thermal loads with deforming and heating the contact layer is presented. The dominant parameters of friction and wear for the investigated interface (radial force, mode of friction, relation for the nominal and real contact areas etc.) are shown in function of different values of rail pressures, varying from 500 to 3000 bar. A special coefficient of accumulation of energy is defined. With these coefficient the analysis of thermal- and stress-conditions for the precision tribosystem become possible. Furthermore this leads to the calculation of the intensity of wear for the mentioned components of the nozzle. The estimation of the service life for the guidance is performed for different values of rail pressures, considering the limit values of wear for the components of the nozzle and of a gap in the contact interface. © Copyright 2011 Society of Automotive Engineers of Japan, Inc. and SAE International
Improve Simulation of Plain Bearings in Dry and Mixed Lubrication Regime by Defining Locally Resolved Dry Friction Coefficients
Asperity friction is a main indicator for wear and heat conduction [1]. It occurs when thickness of oil film shrinks due to high load or slow speed.
Friction is scientifically well known as long as it is dominated by laminar oil film effects. If film thickness shrinks, the friction coefficient depends mainly on surface properties. This inaccuracy is normally preceded in simulation by using friction coefficients defined by Coulomb’s law [2].
To improve simulation results, the simulated friction moment was compared to measurement on a component test rig. Friction moment is produced on every square millimetre of the bearing surface, but can only be measured as an integral. Research findings show that measured results can’t be met by using one global dry friction coefficient for the whole bearing surface, even though it is material dependent.
By introducing locally resolved and asperity pressure dependent dry friction coefficients, it was possible to adapt the simulated friction moment to measure one with a deviation of less than 5 percent. By means of simulation it was possible to develop locally resolved results based on integral measurements; and improve modelling the frictional state of mixed lubrication
- …