219 research outputs found
Divergence and convergence in graphic design and communication design
Academics have recentlyexplored establishing two education networks in graphic design and communication design, one respectively in the UK and the other in Australia. However, although based on similar concerns, beliefs and aspirations, the two networks have assumed different names. For some, graphic design and communication design are interchangeable terms. For others, they mean different things. This may be confusing for some in a higher education sector that has continually evolved and expanded in recent decades. This 'conversation'session set outto explore the similarities and differences between graphic design and communication design. The formation of these networks was briefly outlined and delegates worked together to identify how various defining qualities – competencies, knowledge, skills, activities, functions – might differentiate between graphic design and communication design. The objective was to establish where there are converging and diverging interests, and where there needs to be further research into differentiation that challenges territorial assumptions about practice, theory, and history in graphic design and communication design
Changes in postictal cerebral perfusion are related to the duration of electroconvulsive therapy-induced seizures
Objective: Postictal symptoms may result from cerebral hypoperfusion, which is possibly a consequence of seizure-induced vasoconstriction. Longer seizures have previously been shown to cause more severe postictal hypoperfusion in rats and epilepsy patients. We studied cerebral perfusion after generalized seizures elicited by electroconvulsive therapy (ECT) and its relation to seizure duration. Methods: Patients with a major depressive episode who underwent ECT were included. During treatment, 21-channel continuous electroencephalogram (EEG) was recorded. Arterial spin labeling magnetic resonance imaging scans were acquired before the ECT course (baseline) and approximately 1 h after an ECT-induced seizure (postictal) to quantify global and regional gray matter cerebral blood flow (CBF). Seizure duration was assessed from the period of epileptiform discharges on the EEG. Healthy controls were scanned twice to assess test–retest variability. We performed hypothesis-driven Bayesian analyses to study the relation between global and regional perfusion changes and seizure duration. Results: Twenty-four patients and 27 healthy controls were included. Changes in postictal global and regional CBF were correlated with seizure duration. In patients with longer seizure durations, global decrease in CBF reached values up to 28 mL/100 g/min. Regional reductions in CBF were most prominent in the inferior frontal gyrus, cingulate gyrus, and insula (up to 35 mL/100 g/min). In patients with shorter seizures, global and regional perfusion increased (up to 20 mL/100 g/min). These perfusion changes were larger than changes observed in healthy controls, with a maximum median global CBF increase of 12 mL/100 g/min and a maximum median global CBF decrease of 20 mL/100 g/min. Significance: Seizure duration is a key factor determining postictal perfusion changes. In future studies, seizure duration needs to be considered as a confounding factor due to its opposite effect on postictal perfusion.</p
Negative cognitive schema modification as mediator of symptom improvement after electroconvulsive therapy in major depressive disorder
Background: Electroconvulsive therapy (ECT) is a potent option for treatment-resistant major depressive disorder (MDD). Cognitive models of depression posit that negative cognitions and underlying all-or-nothing negative schemas contribute to and perpetuate depressed mood. This study investigates whether ECT can modify negative schemas, potentially via memory reactivation, and whether such changes are related to MDD symptom improvement. Method: Seventy-two patients were randomized to either an emotional memory reactivation electroconvulsive therapy (EMR-ECT) or control memory reactivation electroconvulsive therapy (CMR-ECT) intervention prior to ECT-sessions in a randomized controlled trail. Emotional memories associated with patients' depression were reactivated before ECT-sessions. At baseline and after the ECT-course, negative schemas and depression severity were assessed using the Dysfunctional Attitude Scale (DAS) and Hamilton Depression Rating Scale HDRS. Mediation analyses were used to examine whether the effects of ECT on HDRS-scores were mediated by changes in DAS-scores or vice versa. Results: Post-ECT DAS-scores were significantly lower compared to baseline. Post-ECT, the mean HDRS-score of the whole sample (15.10 ± 8.65 [SD]; n = 59) was lower compared to baseline (24.83 ± 5.91 [SD]). Multiple regression analysis showed no significant influence of memory reactivation on schema improvement. Path analysis showed that depression improvement was mediated by improvement of negative cognitive schemas. Conclusion: ECT is associated with improvement of negative schemas, which appears to mediate the improvement of depressive symptoms. An emotional memory intervention aimed to modify negative schemas showed no additional effect
Effectiveness of Emotional Memory Reactivation vs Control Memory Reactivation Before Electroconvulsive Therapy in Adult Patients With Depressive Disorder A Randomized Clinical Trial:A Randomized Clinical Trial
Importance: Although electroconvulsive therapy (ECT) is often effective, approximately half of patients with depression undergoing ECT do not benefit sufficiently, and relapse rates are high. ECT sessions have been shown to weaken reactivated memories. The effect of emotional memory retrieval on cognitive schemas remains unknown. Objective: To assess whether emotional memory retrieval just before patients receive ECT sessions weakens underlying cognitive schemas, improves ECT effectiveness, increases ECT response, and reduces relapse rates. Design, Setting, and Participants: In this multicenter randomized clinical trial conducted from 2014 to 2018 in the departments of psychiatry in 3 hospitals in the Netherlands, 72 participants were randomized 1:1 to 2 parallel groups to receive either emotional memory reactivation (EMR-ECT) or control memory reactivation (CMR-ECT) interventions before ECT sessions. The Hamilton Depression Rating Scale (HDRS [total score range: 0-52, with 0-7 indicating no depression and ≥24 indicating severe depression]) was used to measure symptoms of depression during and after ECT, with a 6-month follow-up period. Participants were between ages 18 and 70 years with a primary diagnosis of unipolar major depressive disorder (MDD) according to the Diagnostic and Statistical Manual of Mental Disorders (Fourth Edition, Text Revision) and in whom ECT was indicated. Data analysis was performed from July to November 2019. Interventions: EMR-ECT or CMR-ECT interventions prior to ECT sessions. Main Outcomes and Measures: Depression scores and relapse rates within 6 months were assessed with the HDRS and analyzed using logistic and linear multiple regression analyses. Results: A total of 66 patients (mean [SD] age, 49.3 [12.3] years; 39 [59.1%] women) were randomized to the EMR-ECT group (n = 32) or the CMR-ECT group (n = 34). Regardless of the memory intervention, 42.4% (28 of 66) of patients responded (≥50% decrease of symptom severity on the HDRS). Of patients who responded, 39.3% (11 of 28) relapsed within 6 months. Remission rates (CMR-ECT group, 29.4% [10 of 34] vs EMR-ECT group, 25.0% [8 of 32]; P = .58), mean (SD) HDRS scores after the ECT course (CMR-ECT group, 14.6 [8.6] vs EMR-ECT group, 14.9 [8.8]; P = .88), total mean (SD) number of required ECT sessions for response (CMR-ECT group, 14.9 [7.9] vs EMR-ECT group, 15.6 [7.3]; P = .39), and relapse rates (CMR-ECT group, 46.7% [7 of 15] vs EMR-ECT group, 30.8% [4 of 13]; P = .33) were not significantly altered by the intervention. Conclusions and Relevance: Study findings suggest that the EMR-ECT intervention just before patient receipt of ECT for depression did not improve effectiveness, increase speed of response, or reduce relapse rates after the ECT course compared with patients receiving CMR-ECT. Trial Registration: Trialregister.nl Identifier: NL4289
Monitoring the Crosstalk Between the Estrogen Receptor and Human Epidermal Growth Factor Receptor 2 with PET
Purpose: Ovarian cancer (OC) leads to poor survival rates mainly due to late stage detection and innate or acquired resistance to chemotherapy. Thus, efforts have been made to exploit the estrogen receptor (ER) and human epidermal growth factor receptor 2 (HER2) to treat OC. However, patients eventually become resistant to these treatments as well. HER2 overexpression contributes to the acquired resistance to ER-targeted treatment. Trastuzumab treatment, on the other hand, can result in increased expression of ER, which, in turn, increases the sensitivity of the tumors towards anti-estrogen therapy. More insight into the crosstalk between ER and HER2 signaling could improve our knowledge about acquired resistance in ovarian cancer. The aim of this study was to evaluate whether PET could be used to detect changes in ER expression induced by HER2-targeted treatment in vivo. Procedures: Male athymic nude mice were subcutaneously (sc) inoculated with 106 SKOV3 human ovarian cancer cells (HER2+/ER+). Two weeks after inoculation, tumor-bearing mice were treated intraperitoneally with either vehicle, the HER2 antibody trastuzumab (20 mg/kg, 2×/week), or the HER2-tyrosine kinase inhibitor lapatinib (40 mg/kg, 5 days/week) for 2 weeks. Thereafter, ER expression in the tumor was assessed by PET imaging with 16α-[18F]-fluoro-17β-estradiol ([18F]FES). Tumors were excised for ex vivo ER and HER2 measurement with Western blotting and immunohistochemistry. Results: All treatments led to smaller tumors than vehicle-treated tumors. Higher [18F]FES maximum standardize tumor uptake (SUVmax) was observed in animals treated with trastuzumab (+ 29 %, P = 0.002) or lapatinib (+ 20 %, P = 0.096) than in vehicle-treated controls. PET results were in agreement with ex vivo analyses. Conclusion: FES-PET imaging can detect changes in ER expression induced by HER2-targeted treatment and therefore can be used to investigate the crosstalk between ER and HER2 in a noninvasive manner
In Vivo Induction of P‑Glycoprotein Function can be Measured with [18F]MC225 and PET
P-Glycoprotein (P-gp) is an efflux pump located at the blood−brain barrier (BBB) that contributes to the protection of the central nervous system by transporting neurotoxic compounds out of the brain. A decline in P-gp function has been related to the pathogenesis of neurodegenerative diseases. P-gp inducers can increase the P-gp function and are considered as potential candidates for the treatment of such disorders. The P-gp inducer MC111 increased P-gp expression and function in SW480 human colon adenocarcinoma and colo-320 cells, respectively. Our study aims to evaluate the P-gp inducing effect of MC111 in the whole brain in vivo, using the P-gp tracer [18F]MC225 and positron emission tomography (PET). Eighteen Wistar rats were treated with either vehicle solution, 4.5 mg/kg of MC111 (low-dose group), or 6 mg/kg of MC111 (high-dose group). Animals underwent a 60 min dynamic PET scan with arterial-blood sampling, 24 h after treatment with the inducer. Data were analyzed using the 1-tissue-compartment model and metabolite-corrected plasma as the input function. Model parameters such as the influx constant (K1) and volume of distribution (VT) were calculated, which reflectthe in vivo P-gp function. P-gp and pregnane xenobiotic receptor (PXR) expression levels of the whole brain were assessed using western blot. The administration of MC111 decreased K1 and VT of [18F]MC225 in the whole brain and all of the selected brain regions. In the high-dose group, whole-brain K1 was decreased by 34% (K1-high-dose = 0.20 ± 0.02 vs K1-control = 0.30 ± 0.02; p < 0.001) and in the low-dose group by 7% (K1-low-dose = 0.28 ± 0.02 vs K1-control = 0.30 ± 0.02; p = 0.42) compared to controls. Whole-brain VT was decreased by 25% in the high-dose group (VT-high-dose = 5.92 ± 0.41 vs VT-control = 7.82 ± 0.38; p < 0.001) and by 6% in the low-dose group (VT-low-dose = 7.35 ± 0.38 vs VT-control = 7.82 ± 0.37; p = 0.38) compared to controls. k2 values did not vary after treatment. The treatment did not affect the metabolism of [18F]MC225. Western blot studies using the whole brain tissue did not detect changes in the P-gp expression, however, preliminary results using isolated brain capillaries found an increasing trend up to 37% in treated rats. The decrease in K1 and VT values after treatment with the inducer indicates an increase in the P-gp functionality at the BBB of treated rats. Moreover, preliminary results using brain endothelial cells also sustained the increase in the P-gp expression. In conclusion, the results verify that MC111 induces P-gp expression and function at the BBB in rats. An increasing trend regarding the P-gp expression levels is found using western blot and an increased P-gp function is confirmed
with [18F]MC225 and PET
The Importance of Personal Possessions for the Development of a Sense of Home of Nursing Home Residents
Personal possessions of nursing home residents can contribute to their sense of home. This study investigated which of the personal belongings were considered most important, and if these items indeed contributed to a sense of home. A qualitative research was conducted with 27 nursing home residents. Photographs, paintings, and pieces of furniture are objects with sentimental value. The television set is valued for its practical function. Residents of larger rooms have more flexibility in bringing along personal items, including pieces of furniture. The results of this study can be used for the design of nursing homes or for making informed choices during the process of institutionalization
Delay and Impairment in Brain Development and Function in Rat Offspring After Maternal Exposure to Methylmercury
Maternal exposure to the neurotoxin methylmercury (MeHg) has been shown to have adverse effects on neural development of the offspring in man. Little is known about the underlying mechanisms by which MeHg affects the developing brain. To explore the neurodevelopmental defects and the underlying mechanism associated with MeHg exposure, the cerebellum and cerebrum of Wistar rat pups were analyzed by [F-18]FDG PET functional imaging, field potential analysis, and microarray gene expression profiling. Female rat pups were exposed to MeHg via maternal diet during intrauterinal and lactational period (from gestational day 6 to postnatal day (PND)10), and their brain tissues were sampled for the analysis at weaning (PND18-21) and adulthood (PND61-70). The [F-18]FDG PET imaging and field potential analysis suggested a delay in brain activity and impaired neural function by MeHg. Genome-wide transcriptome analysis substantiated these findings by showing (1) a delay in the onset of gene expression related to neural development, and (2) alterations in pathways related to both structural and functional aspects of nervous system development. The latter included changes in gene expression of developmental regulators, developmental phase associated genes, small GTPase signaling molecules, and representatives of all processes required for synaptic transmission. These findings were observed at dose levels at which only marginal changes in conventional developmental toxicity endpoints were detected. Therefore, the approaches applied in this study are promising in terms of yielding increased sensitivity compared with classical developmental toxicity tests
- …