574 research outputs found
Density profiles and collective excitations of a trapped two component Fermi vapour
We discuss the ground state and the small-amplitude excitations of a
degenerate vapour of fermionic atoms placed in two hyperfine states inside a
spherical harmonic trap. An equations-of-motion approach is set up to discuss
the hydrodynamic dissipation processes from the interactions between the two
components of the fluid beyond mean-field theory and to emphasize analogies
with spin dynamics and spin diffusion in a homogeneous Fermi liquid. The
conditions for the establishment of a collisional regime via scattering against
cold-atom impurities are analyzed. The equilibrium density profiles are then
calculated for a two-component vapour of 40K atoms: they are little modified by
the interactions for presently relevant values of the system parameters, but
spatial separation of the two components will spontaneously arise as the number
of atoms in the trap is increased. The eigenmodes of collective oscillation in
both the total particle number density and the concentration density are
evaluated analytically in the special case of a symmetric two-component vapour
in the collisional regime. The dispersion relation of the surface modes for the
total particle density reduces in this case to that of a one-component Fermi
vapour, whereas the frequencies of all other modes are shifted by the
interactions.Comment: 14 pages, 4 figure
Symmetries of differential-difference dynamical systems in a two-dimensional lattice
Classification of differential-difference equation of the form
are considered
according to their Lie point symmetry groups. The set represents the
point and its six nearest neighbors in a two-dimensional triangular
lattice. It is shown that the symmetry group can be at most 12-dimensional for
abelian symmetry algebras and 13-dimensional for nonsolvable symmetry algebras.Comment: 24 pages, 1 figur
Present Status and Future Programs of the n_TOF Experiment
This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial License 3.0, which permits unrestricted use, distribution, and reproduction in any noncommercial medium, provided the original work is properly citedThe neutron time-of-flight facility n_TOF at CERN, Switzerland, operational since 2001, delivers neutrons using the Proton Synchrotron (PS) 20 GeV/c proton beam impinging on a lead spallation target. The facility combines a very high instantaneous neutron flux, an excellent time of flight resolution due to the distance between the experimental area and the production target (185 meters), a low intrinsic background and a wide range of neutron energies, from thermal to GeV neutrons. These characteristics provide a unique possibility to perform neutron-induced capture and fission cross-section measurements for applications in nuclear astrophysics and in nuclear reactor technology.The most relevant measurements performed up to now and foreseen for the future will be presented in this contribution. The overall efficiency of the experimental program and the range of possible measurements achievable with the construction of a second experimental area (EAR-2), vertically located 20 m on top of the n_TOF spallation target, might offer a substantial improvement in measurement sensitivities. A feasibility study of the possible realisation of the installation extension will be also presented
Measurement of the (90,91,92,93,94,96)Zr(n,gamma) and (139)La(n,gamma) cross sections at n_TOF
Open AccessNeutron capture cross sections of Zr and La isotopes have important implications in the field of nuclear astrophysics as well as in the nuclear technology. In particular the Zr isotopes play a key role for the determination of the neutron density in the He burning zone of the Red Giant star, while the (139)La is important to monitor the s-process abundances from Ba up to Ph. Zr is also largely used as structural materials of traditional and advanced nuclear reactors. The nuclear resonance parameters and the cross section of (90,91,92,93,94,96)Zr and (139)La have been measured at the n_TOF facility at CERN. Based on these data the capture resonance strength and the Maxwellian-averaged cross section were calculated
Ni-62(n,gamma) and Ni-63(n,gamma) cross sections measured at the n_TOF facility at CERN
The cross section of the Ni-62(n,gamma) reaction was measured with the time-of-flight technique at the neutron time-of-flight facility n_TOF at CERN. Capture kernels of 42 resonances were analyzed up to 200 keV neutron energy and Maxwellian averaged cross sections (MACS) from kT = 5-100 keV were calculated. With a total uncertainty of 4.5%, the stellar cross section is in excellent agreement with the the KADoNiS compilation at kT = 30 keV, while being systematically lower up to a factor of 1.6 at higher stellar temperatures. The cross section of the Ni-63(n,gamma) reaction was measured for the first time at n_TOF. We determined unresolved cross sections from 10 to 270 keV with a systematic uncertainty of 17%. These results provide fundamental constraints on s-process production of heavier species, especially the production of Cu in massive stars, which serve as the dominant source of Cu in the solar system.Peer reviewedFinal Accepted Versio
Measurements of high-energy neutron-induced fission of (nat)Pb and (209)Bi
This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial License 3.0, which permits unrestricted use, distribution, and reproduction in any noncommercial medium, provided the original work is properly citedThe CERN Neutron Time-Of-Flight (n_TOF) facility is well suited to measure low cross sections as those of neutron-induced fission in subactinides. The cross section ratios of (nat)Pb and (209)Bi relative to (235)U and (238)U were measured using PPAC detectors and a fragment coincidence method that allows us to identify the fission events. The present experiment provides first results for neutron-induced fission up to 1 GeV. Good agreement is found with previous experimental data below 200 MeV. The comparison with proton-induced fission indicates that the limiting regime where neutron-induced and proton-induced fission reach equal cross sections is close to 1 GeV
Measurement of the neutron capture cross section of the s-only isotope 204Pb from 1 eV to 440 keV
The neutron capture cross section of 204Pb has been measured at the CERN
n_TOF installation with high resolution in the energy range from 1 eV to 440
keV. An R-matrix analysis of the resolved resonance region, between 1 eV and
100 keV, was carried out using the SAMMY code. In the interval between 100 keV
and 440 keV we report the average capture cross section. The background in the
entire neutron energy range could be reliably determined from the measurement
of a 208Pb sample. Other systematic effects in this measurement could be
investigated and precisely corrected by means of detailed Monte Carlo
simulations. We obtain a Maxwellian average capture cross section for 204Pb at
kT=30 keV of 79(3) mb, in agreement with previous experiments. However our
cross section at kT=5 keV is about 35% larger than the values reported so far.
The implications of the new cross section for the s-process abundance
contributions in the Pb/Bi region are discussed.Comment: 8 pages, 3 figures, article submitted to Phys. Rev.
New measurement of neutron capture resonances of 209Bi
The neutron capture cross section of Bi209 has been measured at the CERN n
TOF facility by employing the pulse-height-weighting technique. Improvements
over previous measurements are mainly because of an optimized detection system,
which led to a practically negligible neutron sensitivity. Additional
experimental sources of systematic error, such as the electronic threshold in
the detectors, summing of gamma-rays, internal electron conversion, and the
isomeric state in bismuth, have been taken into account. Gamma-ray absorption
effects inside the sample have been corrected by employing a nonpolynomial
weighting function. Because Bi209 is the last stable isotope in the reaction
path of the stellar s-process, the Maxwellian averaged capture cross section is
important for the recycling of the reaction flow by alpha-decays. In the
relevant stellar range of thermal energies between kT=5 and 8 keV our new
capture rate is about 16% higher than the presently accepted value used for
nucleosynthesis calculations. At this low temperature an important part of the
heavy Pb-Bi isotopes are supposed to be synthesized by the s-process in the He
shells of low mass, thermally pulsing asymptotic giant branch stars. With the
improved set of cross sections we obtain an s-process fraction of 19(3)% of the
solar bismuth abundance, resulting in an r-process residual of 81(3)%. The
present (n,gamma) cross-section measurement is also of relevance for the design
of accelerator driven systems based on a liquid metal Pb/Bi spallation target.Comment: 10 pages, 5figures, recently published in Phys. Rev.
Cross section measurements of 155,157Gd(n, γ) induced by thermal and epithermal neutrons
© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2019Neutron capture cross section measurements on 155Gd and 157Gd were performed using the time-of-flight technique at the n_TOF facility at CERN on isotopically enriched samples. The measurements were carried out in the n_TOF experimental area EAR1, at 185 m from the neutron source, with an array of 4 C6D6 liquid scintillation detectors. At a neutron kinetic energy of 0.0253 eV, capture cross sections of 62.2(2.2) and 239.8(8.4) kilobarn have been derived for 155Gd and 157Gd, respectively, with up to 6% deviation relative to values presently reported in nuclear data libraries, but consistent with those values within 1.6 standard deviations. A resonance shape analysis has been performed in the resolved resonance region up to 181 eV and 307 eV, respectively for 155Gd and 157Gd, where on average, resonance parameters have been found in good agreement with evaluations. Above these energies and up to 1 keV, the observed resonance-like structure of the cross section has been analysed and characterised. From a statistical analysis of the observed neutron resonances we deduced: neutron strength function of 2. 01 (28) × 10 - 4 and 2. 17 (41) × 10 - 4; average total radiative width of 106.8(14) meV and 101.1(20) meV and s-wave resonance spacing 1.6(2) eV and 4.8(5) eV for n + 155Gd and n + 157Gd systems, respectively.Peer reviewedFinal Accepted Versio
Measurement of the 12C(n,p)12B cross section at n-TOF at CERN by in-beam activation analysis
The integral cross section of the 12C(n,p)12B reaction has been determined for the first time in the neutron energy range from threshold to several GeV at the n-TOF facility at CERN. The measurement relies on the activation technique with the β decay of 12B measured over a period of four half-lives within the same neutron bunch in which the reaction occurs. The results indicate that model predictions, used in a variety of applications, are mostly inadequate. The value of the integral cross section reported here can be used as a benchmark for verifying or tuning model calculations.Peer reviewedFinal Accepted Versio
- …