13,559 research outputs found
Gold nanorods as molecular contrast agents in photoacoustic imaging: the promises and the caveats\ud
Rod-shaped gold nanoparticles exhibit intense and narrow absorption peaks for light in the far-red and near-infrared wavelength regions, owing to the excitation of longitudinal plasmons. Light absorption is followed predominantly by non radiative de-excitation, and the released heat and subsequent temperature rise cause strong photoacoustic (optoacoustic) signals to be produced. This feature combined with the relative inertness of gold, and its favorable surface chemistry, which permits affinity biomolecule coupling, has seen gold nanorods (AuNR) attracting much attention as contrast agents and molecular probes for photoacoustic imaging. In this article we provide an short overview of the current status of the use of AuNR in molecular imaging using photoacoustics. We further examine the state of the art in various chemical, physical and biochemical phenomena that have implications for the future photoacoustic applications of these particles. We cover the route through fine-tuning of AuNR synthetic procedures, toxicity reduction by appropriate coatings, in vitro cellular interactions of AuNRs, attachment of targeting antibodies, in vivo fate of the particles and the effects of certain light interactions with the AuN
Conserving Approximations in Time-Dependent Density Functional Theory
In the present work we propose a theory for obtaining successively better
approximations to the linear response functions of time-dependent density or
current-density functional theory. The new technique is based on the
variational approach to many-body perturbation theory (MBPT) as developed
during the sixties and later expanded by us in the mid nineties. Due to this
feature the resulting response functions obey a large number of conservation
laws such as particle and momentum conservation and sum rules. The quality of
the obtained results is governed by the physical processes built in through
MBPT but also by the choice of variational expressions. We here present several
conserving response functions of different sophistication to be used in the
calculation of the optical response of solids and nano-scale systems.Comment: 11 pages, 4 figures, revised versio
Diagrammatic expansion for positive spectral functions beyond GW: Application to vertex corrections in the electron gas
We present a diagrammatic approach to construct self-energy approximations
within many-body perturbation theory with positive spectral properties. The
method cures the problem of negative spectral functions which arises from a
straightforward inclusion of vertex diagrams beyond the GW approximation. Our
approach consists of a two-steps procedure: we first express the approximate
many-body self-energy as a product of half-diagrams and then identify the
minimal number of half-diagrams to add in order to form a perfect square. The
resulting self-energy is an unconventional sum of self-energy diagrams in which
the internal lines of half a diagram are time-ordered Green's functions whereas
those of the other half are anti-time-ordered Green's functions, and the lines
joining the two halves are either lesser or greater Green's functions. The
theory is developed using noninteracting Green's functions and subsequently
extended to self-consistent Green's functions. Issues related to the conserving
properties of diagrammatic approximations with positive spectral functions are
also addressed. As a major application of the formalism we derive the minimal
set of additional diagrams to make positive the spectral function of the GW
approximation with lowest-order vertex corrections and screened interactions.
The method is then applied to vertex corrections in the three-dimensional
homogeneous electron gas by using a combination of analytical frequency
integrations and numerical Monte-Carlo momentum integrations to evaluate the
diagrams.Comment: 19 pages, 19 figure
Diagrammatic expansion for positive density-response spectra: Application to the electron gas
In a recent paper [Phys. Rev. B 90, 115134 (2014)] we put forward a
diagrammatic expansion for the self-energy which guarantees the positivity of
the spectral function. In this work we extend the theory to the density
response function. We write the generic diagram for the density-response
spectrum as the sum of partitions. In a partition the original diagram is
evaluated using time-ordered Green's functions (GF) on the left-half of the
diagram, antitime-ordered GF on the right-half of the diagram and lesser or
greater GF gluing the two halves. As there exist more than one way to cut a
diagram in two halves, to every diagram corresponds more than one partition. We
recognize that the most convenient diagrammatic objects for constructing a
theory of positive spectra are the half-diagrams. Diagrammatic approximations
obtained by summing the squares of half-diagrams do indeed correspond to a
combination of partitions which, by construction, yield a positive spectrum. We
develop the theory using bare GF and subsequently extend it to dressed GF. We
further prove a connection between the positivity of the spectral function and
the analytic properties of the polarizability. The general theory is
illustrated with several examples and then applied to solve the long-standing
problem of including vertex corrections without altering the positivity of the
spectrum. In fact already the first-order vertex diagram, relevant to the study
of gradient expansion, Friedel oscillations, etc., leads to spectra which are
negative in certain frequency domain. We find that the simplest approximation
to cure this deficiency is given by the sum of the zero-th order bubble
diagram, the first-order vertex diagram and a partition of the second-order
ladder diagram. We evaluate this approximation in the 3D homogeneous electron
gas and show the positivity of the spectrum for all frequencies and densities.Comment: 19 pages, 19 figure
Vertex corrections for positive-definite spectral functions of simple metals
We present a systematic study of vertex corrections in the homogeneous
electron gas at metallic densities. The vertex diagrams are built using a
recently proposed positive-definite diagrammatic expansion for the spectral
function. The vertex function not only provides corrections to the well known
plasmon and particle-hole scatterings, but also gives rise to new physical
processes such as generation of two plasmon excitations or the decay of the
one-particle state into a two-particles-one-hole state. By an efficient Monte
Carlo momentum integration we are able to show that the additional scattering
channels are responsible for the bandwidth reduction observed in photoemission
experiments on bulk sodium, appearance of the secondary plasmon satellite below
the Fermi level, and a substantial redistribution of spectral weights. The
feasibility of the approach for first-principles band-structure calculations is
also discussed
Quantification of spatial intensity correlations and photodetector intensity fluctuations of coherent light reflected from turbid particle suspensions
We present a model for predicting the spatial intensity correlation function of dynamic speckle patterns formed by light backscattered from turbid suspensions, and an experimental validation of these predictions. The spatial correlation varies remarkably with multiple scattering. The provided computational scheme is a step towards correctly interpreting signals obtained from instruments based on the measurement of dynamic speckle patterns in the far field
Ultra-nonlocality in density functional theory for photo-emission spectroscopy
We derive an exact expression for the photo-current of photo-emission
spectroscopy using time-dependent current density functional theory (TDCDFT).
This expression is given as an integral over the Kohn-Sham spectral function
renormalized by effective potentials that depend on the exchange-correlation
kernel of current density functional theory. We analyze in detail the physical
content of this expression by making a connection between the
density-functional expression and the diagrammatic expansion of the
photo-current within many-body perturbation theory. We further demonstrate that
the density functional expression does not provide us with information on the
kinetic energy distribution of the photo-electrons. Such information can, in
principle, be obtained from TDCDFT by exactly modeling the experiment in which
the photo-current is split into energy contributions by means of an external
electromagnetic field outside the sample, as is done in standard detectors. We
find, however, that this procedure produces very nonlocal correlations between
the exchange-correlation fields in the sample and the detector.Comment: 11 pages, 11 figure
The 'nanobig rods' class of gold nanorods: optimized dimensions for improved in vivo therapeutic and imaging efficacy
Currently, gold nanorods can be synthesized in a wide range of sizes.
However, for intended biological applications gold nanorods with approximate
dimensions 50 nm x 15 nm are used. We investigate by computer simulation the
effect of particle dimensions on the optical and thermal properties in the
context of the specific applications of photoacoustic imaging. In addition we
discuss the influence of particle size in overcoming the following biophysical
barriers when administrated in vivo: extravasation, avoidance of uptake by
organs of the reticuloendothelial system, penetration through the interstitium,
binding capability and uptake by the target cells. Although more complex
biological influences can be introduced in future analysis, the present work
illustrates that larger gold nanorods, designated by us as "nanobig rods", may
perform relatively better at meeting the requirements for successful in vivo
applications compared to their smaller counterparts which are conventionally
used
- …
