2,455 research outputs found

    Transition amplitudes and sewing properties for bosons on the Riemann sphere

    Full text link
    We consider scalar quantum fields on the sphere, both massive and massless. In the massive case we show that the correlation functions define amplitudes which are trace class operators between tensor products of a fixed Hilbert space. We also establish certain sewing properties between these operators. In the massless case we consider exponential fields and have a conformal field theory. In this case the amplitudes are only bilinear forms but still we establish sewing properties. Our results are obtained in a functional integral framework.Comment: 33 page

    Theory of double resonance magnetometers based on atomic alignment

    Get PDF
    We present a theoretical study of the spectra produced by optical-radio-frequency double resonance devices, in which resonant linearly polarized light is used in the optical pumping and detection processes. We extend previous work by presenting algebraic results which are valid for atomic states with arbitrary angular momenta, arbitrary rf intensities, and arbitrary geometries. The only restriction made is the assumption of low light intensity. The results are discussed in view of their use in optical magnetometers

    Efficient method for simulating quantum electron dynamics under the time dependent Kohn-Sham equation

    Get PDF
    A numerical scheme for solving the time-evolution of wave functions under the time dependent Kohn-Sham equation has been developed. Since the effective Hamiltonian depends on the wave functions, the wave functions and the effective Hamiltonian should evolve consistently with each other. For this purpose, a self-consistent loop is required at every time-step for solving the time-evolution numerically, which is computationally expensive. However, in this paper, we develop a different approach expressing a formal solution of the TD-KS equation, and prove that it is possible to solve the TD-KS equation efficiently and accurately by means of a simple numerical scheme without the use of any self-consistent loops.Comment: 5 pages, 3 figures. Physical Review E, 2002, in pres

    Raman light scattering study and microstructural analysis of epitaxial films of the electron-doped superconductor La_{2-x}Ce_{x}CuO_{4}

    Full text link
    We present a detailed temperature-dependent Raman light scattering study of optical phonons in molecular-beam-epitaxy-grown films of the electron-doped superconductor La_{2-x}Ce_{x}CuO_{4} close to optimal doping (x ~ 0.08, T_c = 29 K and x ~ 0.1, T_c = 27 K). The main focus of this work is a detailed characterization and microstructural analysis of the films. Based on micro-Raman spectroscopy in combination with x-ray diffraction, energy-dispersive x-ray analysis, and scanning electron microscopy, some of the observed phonon modes can be attributed to micron-sized inclusions of Cu_{2}O. In the slightly underdoped film (x ~ 0.08), both the Cu_{2}O modes and others that can be assigned to the La_{2-x}Ce_{x}CuO_{4} matrix show pronounced softening and narrowing upon cooling below T ~ T_c. Based on control measurements on commercial Cu_{2}O powders and on a comparison to prior Raman scattering studies of other high-temperature superconductors, we speculate that proximity effects at La_{2-x}Ce_{x}CuO_{4}/Cu_{2}O interfaces may be responsible for these anomalies. Experiments on the slightly overdoped La_{2-x}Ce_{x}CuO_{4} film (x ~ 0.1) did not reveal comparable phonon anomalies.Comment: 7 pages, 8 figure

    Ferromagnetism and large negative magnetoresistance in Pb doped Bi-Sr-Co-O misfit-layer compound

    Full text link
    Ferromagnetism and accompanying large negative magnetoresistance in Pb-substituted Bi-Sr-Co-O misfit-layer compound are investigated in detail. Recent structural analysis of (Bi,Pb)2{}_2Sr3{}_{3}Co2{}_2O9{}_9, which has been believed to be a Co analogue of Bi2{}_2Sr2{}_2CaCu2{}_2O8+δ{}_{8+\delta}, revealed that it has a more complex structure including a CoO2{}_2 hexagonal layer [T. Yamamoto {\it et al.}, Jpn. J. Appl. Phys. {\bf 39} (2000) L747]. Pb substitution for Bi not only introduces holes into the conducting CoO2{}_2 layers but also creates a certain amount of localized spins. Ferromagnetic transition appears at TT = 3.2 K with small spontaneous magnetization along the cc axis, and around the transition temperature large and anisotropic negative magnetoresistance was observed. This compound is the first example which shows ferromagnetic long-range order in a two-dimensional metallic hexagnonal CoO2{}_2 layer.Comment: 8 pages including eps figures. To be published in J. Phys. Soc. Jp

    Automated user modeling for personalized digital libraries

    Get PDF
    Digital libraries (DL) have become one of the most typical ways of accessing any kind of digitalized information. Due to this key role, users welcome any improvements on the services they receive from digital libraries. One trend used to improve digital services is through personalization. Up to now, the most common approach for personalization in digital libraries has been user-driven. Nevertheless, the design of efficient personalized services has to be done, at least in part, in an automatic way. In this context, machine learning techniques automate the process of constructing user models. This paper proposes a new approach to construct digital libraries that satisfy user’s necessity for information: Adaptive Digital Libraries, libraries that automatically learn user preferences and goals and personalize their interaction using this information

    Field emission properties of nano-composite carbon nitride films

    Full text link
    A modified cathodic arc technique has been used to deposit carbon nitride thin films directly on n+ Si substrates. Transmission Electron Microscopy showed that clusters of fullerene-like nanoparticles are embedded in the deposited material. Field emission in vacuum from as-grown films starts at an electric field strength of 3.8 V/micron. When the films were etched in an HF:NH4F solution for ten minutes, the threshold field decreased to 2.6 V/micron. The role of the carbon nanoparticles in the field emission process and the influence of the chemical etching treatment are discussed.Comment: 22 pages, 8 figures, submitted to J. Vac. Sc. Techn.

    Quantum Phase Transition in the Normal State of High-Tc Cuprates at Optimum Doping

    Full text link
    By using a 60 T magnetic field to suppress superconductivity in La2-pSrpCuO4, (LSCO) we reveal an anomalous peak in the Hall number, located at optimum doping and developing at temperatures below the zero-field superconducting transition temperature, Tc. The anomaly bears a striking resemblance to observations in Bi2Sr2-xLaxCuO6+delta (BSLCO) [F. F. Balakirev et al., Nature (London) 424, 912 (2003)], suggesting a normal state phenomenology common to the cuprates that underlies the high-temperature superconducting phase. The peak is ascribed to the transformation of the "Fermi arcs" into a conventional FS, the signature of a Fermi surface reconstruction associated with a quantum phase transition (QPT) near optimum doping and co-incident with the collapse of the pseudogap state.Comment: 16 pages, 4 figure

    Reentrant Spin-Peierls Transition in Mg-Doped CuGeO_3

    Full text link
    We report a synchrotron x-ray scattering study of the diluted spin-Peierls (SP) material Cu_{1-x}Mg_xGeO_3. In a recent paper we have shown that the SP dimerization attains long-range order only for x < x_c = 0.022(0.001). Here we report that the SP transition is reentrant in the vicinity of the critical concentration x_c. This is manifested by broadening of the SP dimerization superlattice peaks below the reentrance temperature, T_r, which may mean either the complete loss of the long-range SP order or the development of a short-range ordered component within the long-range ordered SP state. Marked hysteresis and very large relaxation times are found in the samples with Mg concentrations in the vicinity of x_c. The reentrant transition is likely related to the competing Neel transition which occurs at a temperature similar to T_r. We argue that impurity-induced competing interchain interactions play an essential role in these phenomena.Comment: 5 pages, 4 embedded eps figure
    • …
    corecore