514 research outputs found

    BioMAc 2016 Bioreattori a membrane (MBR) e trattamenti avanzati per la depurazione delle acque

    Get PDF
    Questo volume raccoglie i contributi presentati nella manifestazione BioMAc 2016: Bioreattori a Membrane (MBR) e trattamenti avanzati per la depurazione delle Acque, che ha avuto luogo presso il Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali dell'Universit\ue0 degli Studi di Palermo, Aula G. Capit\uf2, nei giorni 27 e 28 ottobre 2016

    Aerobic Granular Sludge for Leachate Treatment

    Get PDF
    The treatment of municipal landfill leachate by means of aerobic granular sequencing batch reactors (GSBRs) was investigated. The paper reports the results from an experimental campaign lasted 100 days, which has been divided into three periods: cultivation of granular sludge (70 days), operation with semi-fresh (15 day) and diluted landfill leachate (15 day). Two different GSBR configurations were used: a Sequencing Batch Bubble Column reactor and a Sequencing Batch Airlift Reactor. All reactors were operated at Volume Loading Rates (VLRs) between 4.8 and 7.2 g COD /(m 3 ·d). The Chemical Oxygen Demand (COD) removal efficiency varied between 80% and 90% under operation with synthetic wastewater feeding. On the other hand, the COD removal performance decreased to 40-50 % with semi-fresh leachate and to 50-60% with diluted leachate. Regarding nitrogen removal, after granules formation, the performance were satisfactory only when the reactors were fed with synthetic wastewater. Contrarily, the obtained results underline that a specific pre-treatment of ammonium must be applied in order to optimize nitrogen removal. However, the observed results indicate that the landfill leachate can be potentially treated in GSBR bioreactors

    Simultaneous nitrogen and organic carbon removal in aerobic granular sludge reactors operated with high dissolved oxygen concentration

    Get PDF
    Simultaneous nitrification and denitrification (SND) together with organic removal in granules is usually carried out without Dissolved Oxygen (DO) concentration control, at ‘‘low DO’’ (with a DO < 30–50% of the saturation value, about 3–4 mg/L) to promote anoxic conditions within the aggregates. These conditions can sometimes be in detrimental of the stability of the granules itself due to a lack of shear force. In this work, the authors achieved SND without oxygen control with big sized granules. More spe- cifically, the paper presents a experimentation focused on the analysis of two Sequencing Batch Reactors (SBRs), in bench scale, working with different aerobic sludge granules, in terms of granule size, and high DO concentration, (with concentration varying from anoxic conditions, about DO 0 mg/L, to values close to those of saturation, >7–8 mg/L, during feast and famine conditions respectively). In particular, different strategies of cultivation and several organic and nitrogen loading rate have been applied, in order to eval- uate the efficiencies in SND process without dissolved oxygen control. The results show that, even under conditions of high DO concentration, nitrogen and organic matter can be simultaneously removed, with efficiency >90%. Nevertheless, the biological conditions in the inner layer of the granule may change sig- nificantly between small and big granules, during the feast and famine periods. From point of view of granule stability, it is also interesting that with a particle size greater than 1.5 mm, after the cultivation start-up, the granules are presented stable for a long period (about 100 days) and, despite the variations of operational conditions, the granules breaking was always negligible

    Foaming in membrane bioreactors: Identification of the causes

    Get PDF
    Membrane bioreactors (MBRs) represent by now a well established alternative for wastewater treatment. Their increasing development is undoubtedly related to the several advantages that such technology is able to guarantee. Nevertheless, this technology is not exempt from operational problems; among them the foaming still represents an “open challenge” of the MBR field, due to the high complexity of phe- nomenon. Unfortunately, very little work has been done on the foaming in MBRs and further studies are required. Actually, there is not a distinct difference between conventional activated system and MBR: the main difference is that the MBR plants can retain most Extracellular Polymeric Substances (EPSs) in the bioreactor. For these reason, unlike conventional activated sludge systems, MBRs have experienced foaming in the absence of foam-forming micro-organisms. Nevertheless, the actual mechanisms of EPS production and the role of bacteria in producing foam in activated sludge in MBRs are still unclear. In this paper, the authors investigated the roles of EPS and foam-forming filamentous bacteria by analyzing samples from different pilot plants using MBRs. In particular, in order to define the macroscopic features and the role of EPS and filamentous bacteria, a Modified Scum Index (MSI) test was applied and pro- posed. Based on the MSI and the foam power test, the causes of biological foaming were identified in terms of the potential for foaming, the quality and the quantity of the foam. The results indicated that the MBR foaming was influenced significantly by the concentration of bound EPSs in the sludge. In addition, the quantity and stability of MBR scum increased when both bound EPSs and foam-forming filamentous bacteria were present in the activated sludge

    Waste activated sludge dewaterability: comparative evaluation of sludge derived from CAS and MBR systems

    Get PDF
    Sludge dewatering represents, nowadays, one of the greatest operational cost to wastewater treatment cycle. Physical\u2013chemical and biological parameters are recognized to influence the sludge dewaterability. However, many authors agree in identifying the sludge origin as one of the main aspect involved in sludge dewaterability. Indeed, the sludge origin such as the processes involved in liquid\u2013solid separation, seriously affect the sludge features. In order to elucidate the key factors influencing the dewaterability process, the present work is aimed to investigate the influence of the treatment plant lay-out on sludge dewaterability. The analyzed sludge samples were derived from four conventional activated sludge and two membrane bioreactor wastewater treatment plants. Experimental investigation was focused to highlight difference in sludge dewaterability derived from the application of European Standards adopted for sludge characterization. The achieved results confirmed the complexity of the inter-relationships between many factors affecting the sludge dewaterability

    Sequential biological and photocatalysis based treatments for shipboard slop purification: A pilot plant investigation

    Get PDF
    This study investigated the treatment of a shipboard slop containing commercial gasoline in a pilot plant scale consisting of a membrane biological reactor (MBR) and photocatalytic reactor (PCR) acting in series. The MBR contributed for approximately 70% to the overall slop purification. More precisely, the biological process was able to remove approximately 40%, on average, of the organic pollution in the slop. Nevertheless, the membrane was capable to retain a large amount of organic molecules within the system, amounting for a further 30% of the influent total organic content removal. However, this affected the membrane fouling, thus resulting in the increase of the pore blocking mechanism that accounted for approximately 20% to the total resistance to filtration (2.85∙10 13 m −1 ), even if a significant restoration of the original membrane permeability was obtained after chemical cleanings. On the other hand, the biological treatment produced a clear solution for the photocatalytic system, thereby optimizing the light penetration and generation of highly oxidizing active oxygen species that enabled the degradation of bio-recalcitrant compounds. Indeed, low total organic carbon (TOC) values (&lt;10 mg L −1 ) were achieved in the output of the photocatalytic reactor by means of only 60 Einstein (E) of cumulative impinging energy after the addition of K 2 S 2 O 8 . Overall, coupling the two processes enabled very high TOC removal (ca. 95%)

    Biomethane production from anaerobic co-digestion of selected organic fraction of municipal solid waste (Ofmsw) with sewage sludge: Effect of the inoculum to substrate ratio (isr) and mixture composition on process performances

    Get PDF
    The aim of this study was to evaluate the effect of the inoculum to substrate ratio (ISR) and the mixture ratio between organic fraction of municipal solid waste (OFMSW) and sewage sludge (SS) on the methane production potential achievable from anaerobic co-digestion (AcoD). Biochemical Methane Potential (BMP) assays at mesophilic temperature were used to determine the best AcoD configuration for maximizing methane yield and production rate, as well as to address possible synergistic effects. The maximum methane yield was observed at ISR of 1 and 60% OFMSW:40% SS as co-digestion mixture, whereas the highest methane production rate was achieved at ISR of 2 with the same mixture ratio (207 mL/gVS/d). Synergistic effects were highlighted in the mix-tures having OFMSW below 60%, determining an increase of approximately 40% in methane production than the OFMSW and SS digestion as a sole substrate. The experimental data demonstrated that co-digestion of OFMSW and SS resulted in an increase in the productivity of methane than anaerobic digestion using the sole substrates, producing higher yields or production rates while depending on the ISR and the mixture ratio

    Analysis of biomass characteristics in MBR and MB-MBR systems fed with synthetic wastewater: Influence of a gradual salinity increase

    Get PDF
    The paper presents the results of a field gathering campaign carried out on two different pilot scale membrane bioreactor (MBR) systems, treating synthetic wastewater subject to a gradual increase of salinity. One was a conventional MBR system, while the other was a moving bed biofilm membrane bioreactor (MB-MBR), which combines suspended biomass and biofilm. Indeed, the presence of suspended carriers inside the bioreactor seems to give benefits due to the collisions between the circulating media and the membrane. The aim of the study was the comparison of two configurations in terms of biomass activity characterization and performance (pollutants removal and hydraulic behaviour). The results highlighted a significant biomass activity for both heterotrophic and autotrophic populations. Such behaviour was emphasized in MB-MBR system, likely due to the presence of biofilm attached on suspended sponge carriers, which is characterized by high retention times, thus improving through the "seeding" effect the nitrification ability of the whole syste

    Treatment of oily wastewater with membrane bioreactor systems

    Get PDF
    The aim of the present work was to investigate the behavior of a membrane bioreactor (MBR) system for the treatment of oily wastewater. A bench scale MBR was fed with synthetic wastewater containing diesel fuel. Organic carbon, hydrocarbon and ammonium removal, kinetic constants, extracellular polymeric substances production, and membrane fouling rates were monitored. The MBR plant was operated for more than 200 days, and the results highlighted good carbon removal and nitrification, suggesting a sort of biomass adaptation to hydrocarbons. Membrane fouling analysis showed an increase in total resistance, likely due to hydrocarbons, which caused an irreversible fouling (pore blocking) mainly due to oil deposition
    corecore