765 research outputs found
Ordered spectral statistics in 1D disordered supersymmetric quantum mechanics and Sinai diffusion with dilute absorbers
Some results on the ordered statistics of eigenvalues for one-dimensional
random Schr\"odinger Hamiltonians are reviewed. In the case of supersymmetric
quantum mechanics with disorder, the existence of low energy delocalized states
induces eigenvalue correlations and makes the ordered statistics problem
nontrivial. The resulting distributions are used to analyze the problem of
classical diffusion in a random force field (Sinai problem) in the presence of
weakly concentrated absorbers. It is shown that the slowly decaying averaged
return probability of the Sinai problem, \mean{P(x,t|x,0)}\sim \ln^{-2}t, is
converted into a power law decay, \mean{P(x,t|x,0)}\sim t^{-\sqrt{2\rho/g}},
where is the strength of the random force field and the density of
absorbers.Comment: 10 pages ; LaTeX ; 4 pdf figures ; Proceedings of the meeting
"Fundations and Applications of non-equilibrium statistical mechanics",
Nordita, Stockholm, october 2011 ; v2: appendix added ; v3: figure 2.left
adde
Spectral determinants and zeta functions of Schr\"odinger operators on metric graphs
A derivation of the spectral determinant of the Schr\"odinger operator on a
metric graph is presented where the local matching conditions at the vertices
are of the general form classified according to the scheme of Kostrykin and
Schrader. To formulate the spectral determinant we first derive the spectral
zeta function of the Schr\"odinger operator using an appropriate secular
equation. The result obtained for the spectral determinant is along the lines
of the recent conjecture.Comment: 16 pages, 2 figure
Quantum oscillations in mesoscopic rings and anomalous diffusion
We consider the weak localization correction to the conductance of a ring
connected to a network. We analyze the harmonics content of the
Al'tshuler-Aronov-Spivak (AAS) oscillations and we show that the presence of
wires connected to the ring is responsible for a behaviour different from the
one predicted by AAS. The physical origin of this behaviour is the anomalous
diffusion of Brownian trajectories around the ring, due to the diffusion in the
wires. We show that this problem is related to the anomalous diffusion along
the skeleton of a comb. We study in detail the winding properties of Brownian
curves around a ring connected to an arbitrary network. Our analysis is based
on the spectral determinant and on the introduction of an effective perimeter
probing the different time scales. A general expression of this length is
derived for arbitrary networks. More specifically we consider the case of a
ring connected to wires, to a square network, and to a Bethe lattice.Comment: 17 pages, 7 eps figure
Reshaping and Capturing Leidenfrost drops with a magnet
Liquid oxygen, which is paramagnetic, also undergoes Leidenfrost effect at
room temperature. In this article, we first study the deformation of oxygen
drops in a magnetic field and show that it can be described via an effective
capillary length, which includes the magnetic force. In a second part, we
describe how these ultra-mobile drops passing above a magnet significantly slow
down and can even be trapped. The critical velocity below which a drop is
captured is determined from the deformation induced by the field.Comment: Published in Physics of Fluids (vol. 25, 032108, 2013)
http://pof.aip.org/resource/1/phfle6/v25/i3/p032108_s1?isAuthorized=n
Geometrical dependence of decoherence by electronic interactions in a GaAs/GaAlAs square network
We investigate weak localization in metallic networks etched in a two
dimensional electron gas between mK and mK when electron-electron
(e-e) interaction is the dominant phase breaking mechanism. We show that, at
the highest temperatures, the contributions arising from trajectories that wind
around the rings and trajectories that do not are governed by two different
length scales. This is achieved by analyzing separately the envelope and the
oscillating part of the magnetoconductance. For K we find
\Lphi^\mathrm{env}\propto{T}^{-1/3} for the envelope, and
\Lphi^\mathrm{osc}\propto{T}^{-1/2} for the oscillations, in agreement with
the prediction for a single ring \cite{LudMir04,TexMon05}. This is the first
experimental confirmation of the geometry dependence of decoherence due to e-e
interaction.Comment: LaTeX, 5 pages, 4 eps figure
Sinai model in presence of dilute absorbers
We study the Sinai model for the diffusion of a particle in a one dimension
random potential in presence of a small concentration of perfect
absorbers using the asymptotically exact real space renormalization method. We
compute the survival probability, the averaged diffusion front and return
probability, the two particle meeting probability, the distribution of total
distance traveled before absorption and the averaged Green's function of the
associated Schrodinger operator. Our work confirms some recent results of
Texier and Hagendorf obtained by Dyson-Schmidt methods, and extends them to
other observables and in presence of a drift. In particular the power law
density of states is found to hold in all cases. Irrespective of the drift, the
asymptotic rescaled diffusion front of surviving particles is found to be a
symmetric step distribution, uniform for , where
is a new, survival length scale ( in the absence of
drift). Survival outside this sharp region is found to decay with a larger
exponent, continuously varying with the rescaled distance . A simple
physical picture based on a saddle point is given, and universality is
discussed.Comment: 21 pages, 2 figure
Functionals of the Brownian motion, localization and metric graphs
We review several results related to the problem of a quantum particle in a
random environment.
In an introductory part, we recall how several functionals of the Brownian
motion arise in the study of electronic transport in weakly disordered metals
(weak localization).
Two aspects of the physics of the one-dimensional strong localization are
reviewed : some properties of the scattering by a random potential (time delay
distribution) and a study of the spectrum of a random potential on a bounded
domain (the extreme value statistics of the eigenvalues).
Then we mention several results concerning the diffusion on graphs, and more
generally the spectral properties of the Schr\"odinger operator on graphs. The
interest of spectral determinants as generating functions characterizing the
diffusion on graphs is illustrated.
Finally, we consider a two-dimensional model of a charged particle coupled to
the random magnetic field due to magnetic vortices. We recall the connection
between spectral properties of this model and winding functionals of the planar
Brownian motion.Comment: Review article. 50 pages, 21 eps figures. Version 2: section 5.5 and
conclusion added. Several references adde
Scattering theory on graphs (2): the Friedel sum rule
We consider the Friedel sum rule in the context of the scattering theory for
the Schr\"odinger operator -\Dc_x^2+V(x) on graphs made of one-dimensional
wires connected to external leads. We generalize the Smith formula for graphs.
We give several examples of graphs where the state counting method given by the
Friedel sum rule is not working. The reason for the failure of the Friedel sum
rule to count the states is the existence of states localized in the graph and
not coupled to the leads, which occurs if the spectrum is degenerate and the
number of leads too small.Comment: 20 pages, LaTeX, 6 eps figure
Characterization of the nanophase precipitation in a metastable beta titanium-based alloy by electrical resistivity, dilatometry and neutron diffraction
The metastable beta Ti-6Mo-5Ta-4Fe (wt.%) alloys was synthesized by cold crucible levitation melting and then quenched in water from the beta phase field. In order to investigate the transformation sequence upon heating, thermal analysis methods such as electrical resistivity, dilatometry and neutron thermodiffraction were employed. By these methods, the different temperatures of transition were detected and solute partitioning was oberved to the beta matrix during the omega and alpha nanophase precipitatio
- …