67 research outputs found

    Free-space and underwater GHz data transmission using AlGaInN laser diode technology

    Get PDF
    Laser diodes fabricated from the AlGaInN material system is an emerging technology for defence and security applications; in particular for free space laser communication. Conventional underwater communication is done acoustically with very slow data rates, short reach, and vulnurable for interception. AlGaInN blue-green laser diode technology allows the possibility of both airbourne links and underwater telecom that operate at very fast data rates (GHz), long reach (100’s of metres underwater) and can also be quantum encrypted. The latest developments in AlGaInN laser diode technology are reviewed for defence and security applications. The AlGaInN material system allows for laser diodes to be fabricated over a very wide range of wavelengths from u.v., ~380nm, to the visible ~530nm, by tuning the indium content of the laser GaInN quantum well. Ridge waveguide laser diode structures are fabricated to achieve single mode operation with optical powers of <100mW. Visible light communications at high frequency (up to 2.5 Gbit/s) using a directly modulated 422nm Galliumnitride (GaN) blue laser diode is reported in free-space and underwate

    Lateral grating DFB AlGaInN laser diodes for optical communications and atomic clocks

    Get PDF
    AlGaInN laser diode technology is of considerable interest for telecom applications and next generation atomic optical clocks based on Sr (by using 422nm & 461nm) and Rb at 420.2nm.Very narrow linewidths (<1MHz) are required for such applications. We report lateral gratings on AlGaInN ridge waveguide laser diodes to achieve a single wavelength device with a good side mode suppression ratio (SMSR) that is suitable for atomic clock and telecom applications

    AlGaInN Laser Diode Technology for Systems Applications

    Get PDF
    Gallium Nitride (GaN) laser diodes fabricated from the AlGaInN material system is an emerging technology that allows laser diodes to be fabricated over a very wide wavelength range from u.v. to the visible, and is a key enabler for the development of new system applications such as (underwater and terrestrial) telecommunications, quantum technologies, display sources and medical instrumentation

    High Speed Visible Light Communication Using Blue GaN Laser Diodes

    Get PDF
    GaN-based laser diodes have been developed over the last 20 years making them desirable for many security and defence applications, in particular, free space laser communications. Unlike their LED counterparts, laser diodes are not limited by their carrier lifetime which makes them attractive for high speed communication, whether in free space, through fiber or underwater. Gigabit data transmission can be achieved in free space by modulating the visible light from the laser with a pseudo-random bit sequence (PRBS), with recent results approaching 5 Gbit/s error free data transmission. By exploiting the low-loss in the blue part of the spectrum through water, data transmission experiments have also been conducted to show rates of 2.5 Gbit/s underwater. Different water types have been tested to monitor the effect of scattering and to see how this affects the overall transmission rate and distance. This is of great interest for communication with unmanned underwater vehicles (UUV) as the current method using acoustics is much slower and vulnerable to interception. These types of laser diodes can typically reach 50-100 mW of power which increases the length at which the data can be transmitted. This distance could be further improved by making use of high power laser arrays. Highly uniform GaN substrates with low defectivity allow individually addressable laser bars to be fabricated. This could ultimately increase optical power levels to 4 W for a 20-emitter array. Overall, the development of GaN laser diodes will play an important part in free space optical communications and will be vital in the advancement of security and defence applications

    Surface and interface treatments on wooden artefacts: Potentialities and limits of a non-invasive multi-technique study

    Get PDF
    Wooden artefacts embrace wide-ranging types of objects, like paintings on panel, sculptures, musical instruments, and furniture. Generally, in the manufacturing process of an artwork, wood is firstly treated with organic and inorganic materials to make it nonporous and morphologically homogeneous, and, at last, the surface treatment consists of varnishes or coatings applied with the aims of conferring aesthetic properties and protecting wood from biological growth and external degradation agents, as well as mechanical damage. In this work, different wooden mock-ups were prepared by varying some parameters: concentration of filler and pigment, respectively, in the ground and paint layers, thickness of the protective varnish coat, and sequence of the layers. The mock-ups were subsequently exposed to time-varying artificial aging processes. The multi-analytical non-invasive approach involved spectroscopic (reflection FT-IR, Raman, and X-ray fluorescence), tomographic (optical coherence tomography) and colorimetric techniques. Data were interpreted using both univariate and multivariate methods. The aim was to evaluate potential and limits of each non-invasive technique into the study of different stratigraphies of wooden artworks. This approach was supported by microscopic observations of cross-sections obtained from selected mock-ups. The methodological approach proposed here would add valuable technical know-how and information about the non-invasive techniques applied to the study of wooden artworks

    Surface and interface treatments on wooden artefacts: Potentialities and limits of a non-invasive multi-technique study

    Get PDF
    Wooden artefacts embrace wide-ranging types of objects, like paintings on panel, sculptures, musical instruments, and furniture. Generally, in the manufacturing process of an artwork, wood is firstly treated with organic and inorganic materials to make it nonporous and morphologically homogeneous, and, at last, the surface treatment consists of varnishes or coatings applied with the aims of conferring aesthetic properties and protecting wood from biological growth and external degradation agents, as well as mechanical damage. In this work, different wooden mock-ups were prepared by varying some parameters: concentration of filler and pigment, respectively, in the ground and paint layers, thickness of the protective varnish coat, and sequence of the layers. The mock-ups were subsequently exposed to time-varying artificial aging processes. The multi-analytical non-invasive approach involved spectroscopic (reflection FT-IR, Raman, and X-ray fluorescence), tomographic (optical coherence tomography) and colorimetric techniques. Data were interpreted using both univariate and multivariate methods. The aim was to evaluate potential and limits of each non-invasive technique into the study of different stratigraphies of wooden artworks. This approach was supported by microscopic observations of cross-sections obtained from selected mock-ups. The methodological approach proposed here would add valuable technical know-how and information about the non-invasive techniques applied to the study of wooden artworks

    From IR to X-rays: approaches to go through the coating system of historical bowed string musical instruments

    Get PDF
    Some historical bowed string musical instruments produced in Italy from the 16th to 18th Centuries are considered until now peak-quality masterpieces of the violin-making art. Technical skills were mostly lost after the disappearance of the prominent workshops, and nowadays ancient methods and materials are charming secrets to be revealed by scientific techniques. This work discusses the results obtained by investigating the complex coating systems on bowed string instruments produced by four violin-makers, namely: Jacobus Stainer, Gasparo da Salò, Giovanni Paolo Maggini and Lorenzo Guadagnini. They were selected in order to represent convincingly - albeit not exhaustively - the variety of situations that can be encountered when multi-layered coatings on historical bowed string instruments are considered. The coating systems have been investigated though micro-invasive and non-invasive procedures [1], employing UV-imaging, portable X-ray fluorescence, optical microscopy, scanning electron microscopy coupled with energy dispersive X-ray spectrometry and Fourier transform infrared microscopy. In addition, two tomographic techniques (synchrotron radiation micro-computed tomography and optical coherence tomography) have been used to image the finishing layers spread on the wood substrate [2,3]. Chemical investigations and images on cross-sections have been compared with the morphological view obtained by tomography, with particular attention to the ability of the tomographic insight to distinguish and measure the various overlying layers, and to highlight the presence of dispersed particles

    AlGaInN laser diode technology for free-space and plastic optical fibre telecom applications

    Get PDF
    Gallium Nitride laser diodes fabricated from the AlGaInN material system is an emerging technology for laser sources from the UV to visible and is a potential key enabler for new system applications such as free-space (underwater & air bourne links) and plastic optical fibre telecommunications. We measure visible light (free-space and underwater) communications at high frequency (up to 2.5 Gbit/s) and in plastic optical fibre (POF) using a directly modulated GaN laser diode
    corecore