22,642 research outputs found
EBIC investigation of hydrogenation of crystal defects in EFG solar silicon ribbons
Changes in the contrast and resolution of defect structures in 205 Ohm-cm EFG polysilicon ribbon subjected to annealing and hydrogenation treatments were observed in a JEOL 733 Superprobe scanning electron microscope, using electron beam induced current (EBIC) collected at an A1 Schottky barrier. The Schottky barrier was formed by evaporation of A1 onto the cleaned and polished surface of the ribbon material. Measurement of beam energy, beam current, and the current induced in the Schottky diode enabled observations to be quantified. Exposure to hydrogen plasma increased charge collection efficiency. However, no simple causal relationship between the hydrogenation and charge collection efficiency could be inferred, because the collection efficiency also displayed an unexpected thermal dependence. Good quality intermediate-magnification (1000X-5400X) EBIC micrographs of several specific defect structures were obtained. Comparison of grown-in and stress-induced dislocations after annealing in vacuum at 500 C revealed that stress-induced dislocations are hydrogenated to a much greater degree than grown-in dislocations. The theoretical approximations used to predict EBIC contrast and resolution may not be entirely adequate to describe them under high beam energy and low beam current conditions
Exact active subspace Metropolis-Hastings, with applications to the Lorenz-96 system
We consider the application of active subspaces to inform a
Metropolis-Hastings algorithm, thereby aggressively reducing the computational
dimension of the sampling problem. We show that the original formulation, as
proposed by Constantine, Kent, and Bui-Thanh (SIAM J. Sci. Comput.,
38(5):A2779-A2805, 2016), possesses asymptotic bias. Using pseudo-marginal
arguments, we develop an asymptotically unbiased variant. Our algorithm is
applied to a synthetic multimodal target distribution as well as a Bayesian
formulation of a parameter inference problem for a Lorenz-96 system
Performance of a steel spar wind turbine blade on the Mod-0 100 kW experimental wind turbine
The performance and loading of a large wind rotor, 38.4 m in diameter and composed of two low-cost steel spar blades were examined. Two blades were fabricated at Lewis Research Center and successfully operated on the Mod-0 wind turbine at Plum Brook. The blades were operated on a tower on which the natural bending frequency were altered by placing the tower on a leaf-spring apparatus. It was found that neither blade performance nor loading were affected significantly by this tower softening technique. Rotor performance exceeded prediction while blade loads were found to be in reasonable agreement with those predicted. Seventy-five hours of operation over a five month period resulted in no deterioration in the blade
Independent predictors of breast malignancy in screen-detected microcalcifications: biopsy results in 2545 cases
Background: Mammographic microcalcifications are associated with many benign lesions, ductal carcinoma in situ (DCIS) and invasive cancer. Careful assessment criteria are required to minimise benign biopsies while optimising cancer diagnosis. We wished to evaluate the assessment outcomes of microcalcifications biopsied in the setting of population-based breast cancer screening. Methods: Between January 1992 and December 2007, cases biopsied in which microcalcifications were the only imaging abnormality were included. Patient demographics, imaging features and final histology were subjected to statistical analysis to determine independent predictors of malignancy. Results: In all, 2545 lesions, with a mean diameter of 21.8 mm (s.d. 23.8 mm) and observed in patients with a mean age of 57.7 years (s.d. 8.4 years), were included. Using the grading system adopted by the RANZCR, the grade was 3 in 47.7%; 4 in 28.3% and 5 in 24.0%. After assessment, 1220 lesions (47.9%) were malignant (809 DCIS only, 411 DCIS with invasive cancer) and 1325 (52.1%) were non-malignant, including 122 (4.8%) premalignant lesions (lobular carcinoma in situ, atypical lobular hyperplasia and atypical ductal hyperplasia). Only 30.9% of the DCIS was of low grade. Mammographic extent of microcalcifications >15 mm, imaging grade, their pattern of distribution, presence of a palpable mass and detection after the first screening episode showed significant univariate associations with malignancy. On multivariate modeling imaging grade, mammographic extent of microcalcifications >15 mm, palpable mass and screening episode were retained as independent predictors of malignancy. Radiological grade had the largest effect with lesions of grade 4 and 5 being 2.2 and 3.3 times more likely to be malignant, respectively, than grade 3 lesions. Conclusion: The radiological grading scheme used throughout Australia and parts of Europe is validated as a useful system of stratifying microcalcifications into groups with significantly different risks of malignancy. Biopsy assessment of appropriately selected microcalcifications is an effective method of detecting invasive breast cancer and DCIS, particularly of non-low-grade subtypes.G Farshid, T Sullivan, P Downey, P G Gill, and S Pieters
Wind turbine generator rotor blade concepts with low cost potential
Four processed for producing blades are examined. Two use filament winding techniques and two involve filling a mold or form to produce all or part of a blade. The processes are described and a comparison is made of cost, material properties, design and free vibration characteristics. Conclusions are made regarding the feasibility of each process to produce low cost, structurally adequate blades
The On The Fly Imaging Technique
The On-The-Fly (OTF) imaging technique enables single-dish radio telescopes
to construct images of small areas of the sky with greater efficiency and
accuracy. This paper describes the practical application of the OTF imaging
technique. By way of example the implementation of the OTF imaging technique at
the NRAO 12 Meter Telescope is described. Specific requirements for data
sampling, image formation, and Doppler correction are discussed.Comment: 10 pages, 13 figures, accepted A&
Rotating Electromagnetic Waves in Toroid-Shaped Regions
Electromagnetic waves, solving the full set of Maxwell equations in vacuum,
are numerically computed. These waves occupy a fixed bounded region of the
three dimensional space, topologically equivalent to a toroid. Thus, their
fluid dynamics analogs are vortex rings. An analysis of the shape of the
sections of the rings, depending on the angular speed of rotation and the major
diameter, is carried out. Successively, spherical electromagnetic vortex rings
of Hill's type are taken into consideration. For some interesting peculiar
configurations, explicit numerical solutions are exhibited.Comment: 27 pages, 40 figure
- …