1,327 research outputs found

    Galactic Wind in the Nearby Starburst Galaxy NGC 253 Observed with the Kyoto3DII Fabry-Perot Mode

    Full text link
    We have observed the central region of the nearby starburst galaxy NGC 253 with the Kyoto Tridimensional Spectrograph II (Kyoto3DII) Fabry-Perot mode in order to investigate the properties of its galactic wind. Since this galaxy has a large inclination, it is easy to observe its galactic wind. We produced the Ha, [N II]6583, and [S II]6716,6731 images, as well as those line ratio maps. The [N II]/Ha ratio in the galactic wind region is larger than those in H II regions in the galactic disk. The [N II]/Ha ratio in the southeastern filament, a part of the galactic wind, is the largest and reaches about 1.5. These large [N II]/Ha ratios are explained by shock ionization/excitation. Using the [S II]/Ha ratio map, we spatially separate the galactic wind region from the starburst region. The kinetic energy of the galactic wind can be sufficiently supplied by supernovae in a starburst region in the galactic center. The shape of the galactic wind and the line ratio maps are non-axisymmetric about the galactic minor axis, which is also seen in M82. In the [N II]6583/[S II]6716,6731 map, the positions with large ratios coincide with the positions of star clusters found in the Hubble Space Telescope (HST) observation. This means that intense star formation causes strong nitrogen enrichment in these regions. Our unique data of the line ratio maps including [S II] lines have demonstrated their effectiveness for clearly distinguishing between shocked gas regions and starburst regions, determining the extent of galactic wind and its mass and kinetic energy, and discovering regions with enhanced nitrogen abundance.Comment: 22 pages, 5 figures, 1 table, accepted for publication in Ap

    Detection of Non-Random Galaxy Orientations in X-ray Subclusters of the Coma Cluster

    Full text link
    This study on the Coma cluster suggests that there are deviations from a completely random galaxy orientation on small scales. Since we found a significant coincidence of hot-gas features identified in the latest X-ray observations of Coma with these local anisotropies, they may indicate regions of recent mutual interaction of member galaxies within subclusters which are currently falling in on the main cluster.Comment: 4 pages, 4 figures, 3 tables v2: Rewritten introduction, amendments to the 'Interpretation' sectio

    Role of electron-electron and electron-phonon interaction effect in the optical conductivity of VO2

    Full text link
    We have investigated the charge dynamics of VO2 by optical reflectivity measurements. Optical conductivity clearly shows a metal-insulator transition. In the metallic phase, a broad Drude-like structure is observed. On the other hand, in the insulating phase, a broad peak structure around 1.3 eV is observed. It is found that this broad structure observed in the insulating phase shows a temperature dependence. We attribute this to the electron-phonon interaction as in the photoemission spectra.Comment: 6 pages, 8 figures, accepted for publication in Phys. Rev.

    Relation between the superconducting gap energy and the two-magnon Raman peak energy in Bi2Sr2Ca{1-x}YxCu2O{8+\delta}

    Full text link
    The relation between the electronic excitation and the magnetic excitation for the superconductivity in Bi2Sr2Ca{1-x}YxCu2O{8+\delta} was investigated by wide-energy Raman spectroscopy. In the underdoping region the B1g scattering intensity is depleted below the two-magnon peak energy due to the "hot spots" effects. The depleted region decreases according to the decrease of the two-magnon peak energy, as the carrier concentration ncreases. This two-magnon peak energy also determines the B1g superconducting gap energy as 2ΔαωTwoMagnonJeffective2\Delta \approx \alpha \hbar \omega_{\rm Two-Magnon} \approx J_{\rm effective} (α=0.340.41)(\alpha=0.34-0.41) from under to overdoping hole concentration.Comment: 10 pages, 4 figure

    Prime Focus Spectrograph for the Subaru telescope: massively multiplexed optical and near-infrared fiber spectrograph

    Get PDF
    The Prime Focus Spectrograph (PFS) is an optical/near-infrared multifiber spectrograph with 2394 science fibers distributed across a 1.3-deg diameter field of view at the Subaru 8.2-m telescope. The wide wavelength coverage from 0.38  μm to 1.26  μm, with a resolving power of 3000, simultaneously strengthens its ability to target three main survey programs: cosmology, galactic archaeology and galaxy/AGN evolution. A medium resolution mode with a resolving power of 5000 for 0.71  μm to 0.89  μm will also be available by simply exchanging dispersers. We highlight some of the technological aspects of the design. To transform the telescope focal ratio, a broad-band coated microlens is glued to each fiber tip. A higher transmission fiber is selected for the longest part of the cable system, optimizing overall throughput; a fiber with low focal ratio degradation is selected for the fiber-positioner and fiber-slit components, minimizing the effects of fiber movements and fiber bending. Fiber positioning will be performed by a positioner consisting of two stages of piezo-electric rotary motors. The positions of these motors are measured by taking an image of artificially back-illuminated fibers with the metrology camera located in the Cassegrain container; the fibers are placed in the proper location by iteratively measuring and then adjusting the positions of the motors. Target light reaches one of the four identical fast-Schmidt spectrograph modules, each with three arms. The PFS project has passed several project-wide design reviews and is now in the construction phase

    Lattice dynamics and the electron-phonon interaction in Ca2_2RuO4_4

    Full text link
    We present a Raman scattering study of Ca2_2RuO4_4, in which we investigate the temperature-dependence of the lattice dynamics and the electron-phonon interaction below the metal-insulator transition temperature ({\it T}MI_{\rm MI}). Raman spectra obtained in a backscattering geometry with light polarized in the ab-plane reveal 9 B1g_{1g} phonon modes (140, 215, 265, 269, 292, 388, 459, 534, and 683 cm1^{-1}) and 9 Ag_g phonon modes (126, 192, 204, 251, 304, 322, 356, 395, and 607 cm1^{-1}) for the orthorhombic crystal structure (Pbca-D2h15_{2h}^{15}). With increasing temperature toward {\it T}MI_{\rm MI}, the observed phonon modes shift to lower energies and exhibit reduced spectral weights, reflecting structural changes associated with the elongation of the RuO6_6 octahedra. Interestingly, the phonons exhibit significant increases in linewidths and asymmetries for {\it T} >> {\it T}N_{\rm N}. These results indicate that there is an increase in the effective number of electrons and the electron-phonon interaction strengths as the temperature is raised through {\it T}N_{\rm N}, suggesting the presence of orbital fluctuations in the temperature regime {\it T}N_{\rm N} << {\it T} << {\it T}MI_{\rm MI}.Comment: 6 pages, 4 figure

    Prime focus spectrograph: Subaru's future

    Get PDF
    The Prime Focus Spectrograph (PFS) of the Subaru Measurement of Images and Redshifts (SuMIRe) project has been endorsed by Japanese community as one of the main future instruments of the Subaru 8.2-meter telescope at Mauna Kea, Hawaii. This optical/near-infrared multi-fiber spectrograph targets cosmology with galaxy surveys, Galactic archaeology, and studies of galaxy/AGN evolution. Taking advantage of Subaru’s wide field of view, which is further extended with the recently completed Wide Field Corrector, PFS will enable us to carry out multi-fiber spectroscopy of 2400 targets within 1.3 degree diameter. A microlens is attached at each fiber entrance for F-ratio transformation into a larger one so that difficulties of spectrograph design are eased. Fibers are accurately placed onto target positions by positioners, each of which consists of two stages of piezo-electric rotary motors, through iterations by using back-illuminated fiber position measurements with a widefield metrology camera. Fibers then carry light to a set of four identical fast-Schmidt spectrographs with three color arms each: the wavelength ranges from 0.38 μm to 1.3 μm will be simultaneously observed with an average resolving power of 3000. Before and during the era of extremely large telescopes, PFS will provide the unique capability of obtaining spectra of 2400 cosmological/astrophysical targets simultaneously with an 8-10 meter class telescope. The PFS collaboration, led by IPMU, consists of USP/LNA in Brazil, Caltech/JPL, Princeton, and JHU in USA, LAM in France, ASIAA in Taiwan, and NAOJ/Subaru

    Resonant Two-Magnon Raman Scattering in Cuprate Antiferromagnetic Insulators

    Full text link
    We present results of low-temperature two-magnon resonance Raman excitation profile measurements for single layer Sr_2CuO_2Cl_2 and bilayer YBa_2Cu_3O_{6 + \delta} antiferromagnets over the excitation region from 1.65 to 3.05 eV. These data reveal composite structure of the two-magnon line shape and strong nonmonotic dependence of the scattering intensity on excitation energy. We analyze these data using the triple resonance theory of Chubukov and Frenkel (Phys. Rev. Lett., 74, 3057 (1995)) and deduce information about magnetic interaction and band parameters in these materials.Comment: REVTeX, 4 pages + 2 PostScript (compressed) figure

    Two--magnon scattering and the spin--phonon interaction beyond the adiabatic approximation

    Full text link
    We consider a model of Raman scattering for a two--dimensional S=1/2S=1/2 Heisenberg Anti-Ferromagnet which includes a {\it dynamical} spin--phonon interaction. We observe a broadening of the line shape due to increased coupling with excited high--energy spin states. Our results are close to a model of random static exchange interactions, first introduced in this context by Haas {\it et al.} [J. Appl. Phys. {\bf 75}, 6340, (1994)], which, when extended to large numbers of spins, explains experiments in the parent insulating compounds of high-TcT_c superconductors.Comment: 14 pages (revtex format), 8 postscript figure
    corecore