1,327 research outputs found
Galactic Wind in the Nearby Starburst Galaxy NGC 253 Observed with the Kyoto3DII Fabry-Perot Mode
We have observed the central region of the nearby starburst galaxy NGC 253
with the Kyoto Tridimensional Spectrograph II (Kyoto3DII) Fabry-Perot mode in
order to investigate the properties of its galactic wind. Since this galaxy has
a large inclination, it is easy to observe its galactic wind. We produced the
Ha, [N II]6583, and [S II]6716,6731 images, as well as those line ratio maps.
The [N II]/Ha ratio in the galactic wind region is larger than those in H II
regions in the galactic disk. The [N II]/Ha ratio in the southeastern filament,
a part of the galactic wind, is the largest and reaches about 1.5. These large
[N II]/Ha ratios are explained by shock ionization/excitation. Using the [S
II]/Ha ratio map, we spatially separate the galactic wind region from the
starburst region. The kinetic energy of the galactic wind can be sufficiently
supplied by supernovae in a starburst region in the galactic center. The shape
of the galactic wind and the line ratio maps are non-axisymmetric about the
galactic minor axis, which is also seen in M82. In the [N II]6583/[S
II]6716,6731 map, the positions with large ratios coincide with the positions
of star clusters found in the Hubble Space Telescope (HST) observation. This
means that intense star formation causes strong nitrogen enrichment in these
regions. Our unique data of the line ratio maps including [S II] lines have
demonstrated their effectiveness for clearly distinguishing between shocked gas
regions and starburst regions, determining the extent of galactic wind and its
mass and kinetic energy, and discovering regions with enhanced nitrogen
abundance.Comment: 22 pages, 5 figures, 1 table, accepted for publication in Ap
Detection of Non-Random Galaxy Orientations in X-ray Subclusters of the Coma Cluster
This study on the Coma cluster suggests that there are deviations from a
completely random galaxy orientation on small scales. Since we found a
significant coincidence of hot-gas features identified in the latest X-ray
observations of Coma with these local anisotropies, they may indicate regions
of recent mutual interaction of member galaxies within subclusters which are
currently falling in on the main cluster.Comment: 4 pages, 4 figures, 3 tables v2: Rewritten introduction, amendments
to the 'Interpretation' sectio
Role of electron-electron and electron-phonon interaction effect in the optical conductivity of VO2
We have investigated the charge dynamics of VO2 by optical reflectivity
measurements. Optical conductivity clearly shows a metal-insulator transition.
In the metallic phase, a broad Drude-like structure is observed. On the other
hand, in the insulating phase, a broad peak structure around 1.3 eV is
observed. It is found that this broad structure observed in the insulating
phase shows a temperature dependence. We attribute this to the electron-phonon
interaction as in the photoemission spectra.Comment: 6 pages, 8 figures, accepted for publication in Phys. Rev.
Relation between the superconducting gap energy and the two-magnon Raman peak energy in Bi2Sr2Ca{1-x}YxCu2O{8+\delta}
The relation between the electronic excitation and the magnetic excitation
for the superconductivity in Bi2Sr2Ca{1-x}YxCu2O{8+\delta} was investigated by
wide-energy Raman spectroscopy. In the underdoping region the B1g scattering
intensity is depleted below the two-magnon peak energy due to the "hot spots"
effects. The depleted region decreases according to the decrease of the
two-magnon peak energy, as the carrier concentration ncreases. This two-magnon
peak energy also determines the B1g superconducting gap energy as
from under to overdoping hole concentration.Comment: 10 pages, 4 figure
Prime Focus Spectrograph for the Subaru telescope: massively multiplexed optical and near-infrared fiber spectrograph
The Prime Focus Spectrograph (PFS) is an optical/near-infrared multifiber spectrograph with 2394 science fibers distributed across a 1.3-deg diameter field of view at the Subaru 8.2-m telescope. The wide wavelength coverage from 0.38 μm to 1.26 μm, with a resolving power of 3000, simultaneously strengthens its ability to target three main survey programs: cosmology, galactic archaeology and galaxy/AGN evolution. A medium resolution mode with a resolving power of 5000 for 0.71 μm to 0.89 μm will also be available by simply exchanging dispersers. We highlight some of the technological aspects of the design. To transform the telescope focal ratio, a broad-band coated microlens is glued to each fiber tip. A higher transmission fiber is selected for the longest part of the cable system, optimizing overall throughput; a fiber with low focal ratio degradation is selected for the fiber-positioner and fiber-slit components, minimizing the effects of fiber movements and fiber bending. Fiber positioning will be performed by a positioner consisting of two stages of piezo-electric rotary motors. The positions of these motors are measured by taking an image of artificially back-illuminated fibers with the metrology camera located in the Cassegrain container; the fibers are placed in the proper location by iteratively measuring and then adjusting the positions of the motors. Target light reaches one of the four identical fast-Schmidt spectrograph modules, each with three arms. The PFS project has passed several project-wide design reviews and is now in the construction phase
Lattice dynamics and the electron-phonon interaction in CaRuO
We present a Raman scattering study of CaRuO, in which we investigate
the temperature-dependence of the lattice dynamics and the electron-phonon
interaction below the metal-insulator transition temperature ({\it T}). Raman spectra obtained in a backscattering geometry with light polarized
in the ab-plane reveal 9 B phonon modes (140, 215, 265, 269, 292, 388,
459, 534, and 683 cm) and 9 A phonon modes (126, 192, 204, 251, 304,
322, 356, 395, and 607 cm) for the orthorhombic crystal structure
(PbcaD). With increasing temperature toward {\it T},
the observed phonon modes shift to lower energies and exhibit reduced spectral
weights, reflecting structural changes associated with the elongation of the
RuO octahedra. Interestingly, the phonons exhibit significant increases in
linewidths and asymmetries for {\it T} {\it T}. These results
indicate that there is an increase in the effective number of electrons and the
electron-phonon interaction strengths as the temperature is raised through {\it
T}, suggesting the presence of orbital fluctuations in the
temperature regime {\it T} {\it T} {\it T}.Comment: 6 pages, 4 figure
Prime focus spectrograph: Subaru's future
The Prime Focus Spectrograph (PFS) of the Subaru Measurement of Images and Redshifts (SuMIRe) project has been endorsed by Japanese community as one of the main future instruments of the Subaru 8.2-meter telescope at Mauna Kea, Hawaii. This optical/near-infrared multi-fiber spectrograph targets cosmology with galaxy surveys, Galactic archaeology, and studies of galaxy/AGN evolution. Taking advantage of Subaru’s wide field of view, which is further extended with the recently completed Wide Field Corrector, PFS will enable us to carry out multi-fiber spectroscopy of 2400 targets within 1.3 degree diameter. A microlens is attached at each fiber entrance for F-ratio transformation into a larger one so that difficulties of spectrograph design are eased. Fibers are accurately placed onto target positions by positioners, each of which consists of two stages of piezo-electric rotary motors, through iterations by using back-illuminated fiber position measurements with a widefield metrology camera. Fibers then carry light to a set of four identical fast-Schmidt spectrographs with three color arms each: the wavelength ranges from 0.38 μm to 1.3 μm will be simultaneously observed with an average resolving power of 3000. Before and during the era of extremely large telescopes, PFS will provide the unique capability of obtaining spectra of 2400 cosmological/astrophysical targets simultaneously with an 8-10 meter class telescope. The PFS collaboration, led by IPMU, consists of USP/LNA in Brazil, Caltech/JPL, Princeton, and JHU in USA, LAM in France, ASIAA in Taiwan, and NAOJ/Subaru
Resonant Two-Magnon Raman Scattering in Cuprate Antiferromagnetic Insulators
We present results of low-temperature two-magnon resonance Raman excitation
profile measurements for single layer Sr_2CuO_2Cl_2 and bilayer YBa_2Cu_3O_{6 +
\delta} antiferromagnets over the excitation region from 1.65 to 3.05 eV. These
data reveal composite structure of the two-magnon line shape and strong
nonmonotic dependence of the scattering intensity on excitation energy. We
analyze these data using the triple resonance theory of Chubukov and Frenkel
(Phys. Rev. Lett., 74, 3057 (1995)) and deduce information about magnetic
interaction and band parameters in these materials.Comment: REVTeX, 4 pages + 2 PostScript (compressed) figure
Two--magnon scattering and the spin--phonon interaction beyond the adiabatic approximation
We consider a model of Raman scattering for a two--dimensional
Heisenberg Anti-Ferromagnet which includes a {\it dynamical} spin--phonon
interaction. We observe a broadening of the line shape due to increased
coupling with excited high--energy spin states. Our results are close to a
model of random static exchange interactions, first introduced in this context
by Haas {\it et al.} [J. Appl. Phys. {\bf 75}, 6340, (1994)], which, when
extended to large numbers of spins, explains experiments in the parent
insulating compounds of high- superconductors.Comment: 14 pages (revtex format), 8 postscript figure
- …