26 research outputs found

    Systematic review of the evidence relating FEV1 decline to giving up smoking

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The rate of forced expiratory volume in 1 second (FEV<sub>1</sub>) decline ("beta") is a marker of chronic obstructive pulmonary disease risk. The reduction in beta after quitting smoking is an upper limit for the reduction achievable from switching to novel nicotine delivery products. We review available evidence to estimate this reduction and quantify the relationship of smoking to beta.</p> <p>Methods</p> <p>Studies were identified, in healthy individuals or patients with respiratory disease, that provided data on beta over at least 2 years of follow-up, separately for those who gave up smoking and other smoking groups. Publications to June 2010 were considered. Independent beta estimates were derived for four main smoking groups: never smokers, ex-smokers (before baseline), quitters (during follow-up) and continuing smokers. Unweighted and inverse variance-weighted regression analyses compared betas in the smoking groups, and in continuing smokers by amount smoked, and estimated whether beta or beta differences between smoking groups varied by age, sex and other factors.</p> <p>Results</p> <p>Forty-seven studies had relevant data, 28 for both sexes and 19 for males. Sixteen studies started before 1970. Mean follow-up was 11 years. On the basis of weighted analysis of 303 betas for the four smoking groups, never smokers had a beta 10.8 mL/yr (95% confidence interval (CI), 8.9 to 12.8) less than continuing smokers. Betas for ex-smokers were 12.4 mL/yr (95% CI, 10.1 to 14.7) less than for continuing smokers, and for quitters, 8.5 mL/yr (95% CI, 5.6 to 11.4) less. These betas were similar to that for never smokers. In continuing smokers, beta increased 0.33 mL/yr per cigarette/day. Beta differences between continuing smokers and those who gave up were greater in patients with respiratory disease or with reduced baseline lung function, but were not clearly related to age or sex.</p> <p>Conclusion</p> <p>The available data have numerous limitations, but clearly show that continuing smokers have a beta that is dose-related and over 10 mL/yr greater than in never smokers, ex-smokers or quitters. The greater decline in those with respiratory disease or reduced lung function is consistent with some smokers having a more rapid rate of FEV<sub>1 </sub>decline. These results help in designing studies comparing continuing smokers of conventional cigarettes and switchers to novel products.</p

    What to consider before prescribing inhaled medications: a pragmatic approach for evaluating the current inhaler landscape

    No full text
    Inhaled therapies are the cornerstone of treatment in asthma and chronic obstructive pulmonary disease, and there are a multitude of devices available. There is, however, a distinct lack of evidence-based guidance for healthcare providers on how to choose an appropriate inhaler. This review aims to summarise recent updates on topics related to inhaler choice, and to offer practical considerations for healthcare providers regarding currently marketed devices. The importance of choosing the right inhaler for the right patient is discussed, and the relative merits of dry powder inhalers, pressurised metered dose inhalers, breath-actuated pressurised metered dose inhalers, spacers and soft mist inhalers are considered. Compiling the latest studies in the devices therapy area, this review focuses on the most common types of handling errors, as well as the comparative rates of incorrect inhalation technique between devices. The impact of device-specific handling errors on inhaler performance is also discussed, and the characteristics that can impair optimal drug delivery, such as inhalation flow rate, inhalation volume and particle size, are compared between devices. The impact of patient perceptions, behaviours and problems with inhalation technique is analysed, and the need for appropriate patient education is also highlighted. The continued development of technology in inhaler design and the need to standardise study assessment, endpoints and patient populations are identified as future research needs. The reviews of this paper are available via the supplemental material section

    Scientific rationale for the possible inhaled corticosteroid intraclass difference in the risk of pneumonia in COPD

    No full text
    Christer Janson,1 Georgios Stratelis,1,2 Anna Miller-Larsson,3 Tim W Harrison,4 Kjell Larsson5 1Respiratory, Allergy and Sleep Research Unit, Department of Medical Sciences, Uppsala University, Uppsala, Sweden; 2Respiratory, Inflammation and Autoimmunity, AstraZeneca Nordic, S&ouml;dert&auml;lje, Sweden; 3Respiratory GMed, AstraZeneca Gothenburg, M&ouml;lndal, Sweden; 4Nottingham Respiratory Research Unit, City Hospital Campus, University of Nottingham, Nottingham, UK; 5Lung and Airway Research, National Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden Abstract: Inhaled corticosteroids (ICSs) treatment combined with long-acting &beta;2-adrenoceptor agonists (LABAs) reduces the risk of exacerbations in COPD, but the use of ICSs is associated with increased incidence of pneumonia. There are indications that this association is stronger for fluticasone propionate than for budesonide. We have examined systematic reviews assessing the risk of pneumonia associated with fluticasone propionate and budesonide COPD therapy. Compared with placebo or LABAs, we found that fluticasone propionate was associated with 43%&ndash;78% increased risk of pneumonia, while only slightly increased risk or no risk was found for budesonide. We have evaluated conceivable mechanisms which may explain this difference and suggest that the higher pneumonia risk with fluticasone propionate treatment is caused by greater and more protracted immunosuppressive effects locally in the airways/lungs. These effects are due to the much slower dissolution of fluticasone propionate particles in airway luminal fluid, resulting in a slower uptake into the airway tissue and a much longer presence of fluticasone propionate in airway epithelial lining fluid. Keywords: COPD, pneumonia, inhaled corticosteroids, budesonide, fluticason
    corecore