43 research outputs found

    Indications for the Nonexistence of Three-Neutron Resonances near the Physical Region

    Get PDF
    The pending question of the existence of three-neutron resonances near the physical energy region is reconsidered. Finite rank neutron-neutron forces are used in Faddeev equations, which are analytically continued into the unphysical energy sheet below the positive real energy axis. The trajectories of the three-neutron S-matrix poles in the states of total angular momenta and parity J^\pi=1/2 +- and J^\pi= 3/2 +- are traced out as a function of artificial enhancement factors of the neutron-neutron forces. The final positions of the S-matrix poles removing the artificial factors are found in all cases to be far away from the positive real energy axis, which provides a strong indication for the nonexistence of nearby three-neutron resonances. The pole trajectories close to the threshold E=0 are also predicted out of auxiliary generated three-neutron bound state energies using the Pad\'e method and agree very well with the directly calculated ones.Comment: 20 pages, 7 Postscript figures, fig.1 is corrected, uses relax.st

    Syndecan-1 and FGF-2, but Not FGF Receptor-1, Share a Common Transport Route and Co-Localize with Heparanase in the Nuclei of Mesenchymal Tumor Cells

    Get PDF
    Syndecan-1 forms complexes with growth factors and their cognate receptors in the cell membrane. We have previously reported a tubulin-mediated translocation of syndecan-1 to the nucleus. The transport route and functional significance of nuclear syndecan-1 is still incompletely understood. Here we investigate the sub-cellular distribution of syndecan-1, FGF-2, FGFR-1 and heparanase in malignant mesenchymal tumor cells, and explore the possibility of their coordinated translocation to the nucleus. To elucidate a structural requirement for this nuclear transport, we have transfected cells with a syndecan-1/EGFP construct or with a short truncated version containing only the tubulin binding RMKKK sequence. The sub-cellular distribution of the EGFP fusion proteins was monitored by fluorescence microscopy. Our data indicate that syndecan-1, FGF-2 and heparanase co-localize in the nucleus, whereas FGFR-1 is enriched mainly in the perinuclear area. Overexpression of syndecan-1 results in increased nuclear accumulation of FGF-2, demonstrating the functional importance of syndecan-1 for this nuclear transport. Interestingly, exogenously added FGF-2 does not follow the route taken by endogenous FGF-2. Furthermore, we prove that the RMKKK sequence of syndecan-1 is necessary and sufficient for nuclear translocation, acting as a nuclear localization signal, and the Arginine residue is vital for this localization. We conclude that syndecan-1 and FGF-2, but not FGFR-1 share a common transport route and co-localize with heparanase in the nucleus, and this transport is mediated by the RMKKK motif in syndecan-1. Our study opens a new perspective in the proteoglycan field and provides more evidence of nuclear interactions of syndecan-1
    corecore