478 research outputs found
Real-World Repetition Estimation by Div, Grad and Curl
We consider the problem of estimating repetition in video, such as performing
push-ups, cutting a melon or playing violin. Existing work shows good results
under the assumption of static and stationary periodicity. As realistic video
is rarely perfectly static and stationary, the often preferred Fourier-based
measurements is inapt. Instead, we adopt the wavelet transform to better handle
non-static and non-stationary video dynamics. From the flow field and its
differentials, we derive three fundamental motion types and three motion
continuities of intrinsic periodicity in 3D. On top of this, the 2D perception
of 3D periodicity considers two extreme viewpoints. What follows are 18
fundamental cases of recurrent perception in 2D. In practice, to deal with the
variety of repetitive appearance, our theory implies measuring time-varying
flow and its differentials (gradient, divergence and curl) over segmented
foreground motion. For experiments, we introduce the new QUVA Repetition
dataset, reflecting reality by including non-static and non-stationary videos.
On the task of counting repetitions in video, we obtain favorable results
compared to a deep learning alternative
An explorative study of interface support for image searching
In this paper we study interfaces for image retrieval systems. Current image retrieval interfaces are limited to providing query facilities and result presentation. The user can inspect the results and possibly provide feedback on their relevance for the current query. Our approach, in contrast, encourages the user to group and organise their search results and thus provide more fine-grained feedback for the system. It combines the search and management process, which - according to our hypothesis - helps the user to onceptualise their search tasks and to overcome the query formulation problem. An evaluation, involving young design-professionals and diĀ®erent types of information seeking scenarios, shows that the proposed approach succeeds in encouraging the user to conceptualise their tasks and that it leads to increased user satisfaction. However, it could not be shown to increase performance. We identify the problems in the current setup, which when eliminated should lead to more effective searching overall
A framework for evaluating automatic image annotation algorithms
Several Automatic Image Annotation (AIA) algorithms have been introduced recently, which have been found to outperform previous models. However, each one of them has been evaluated using either different descriptors, collections or parts of collections, or "easy" settings. This fact renders their results non-comparable, while we show that collection-specific properties are responsible for the high reported performance measures, and not the actual models. In this paper we introduce a framework for the evaluation of image annotation models, which we use to evaluate two state-of-the-art AIA algorithms. Our findings reveal that a simple Support Vector Machine (SVM) approach using Global MPEG-7 Features outperforms state-of-the-art AIA models across several collection settings. It seems that these models heavily depend on the set of features and the data used, while it is easy to exploit collection-specific properties, such as tag popularity especially in the commonly used Corel 5K dataset and still achieve good performance
High-level feature detection from video in TRECVid: a 5-year retrospective of achievements
Successful and effective content-based access to digital
video requires fast, accurate and scalable methods to determine the video content automatically. A variety of contemporary approaches to this rely on text taken from speech within the video, or on matching one video frame against others using low-level characteristics like
colour, texture, or shapes, or on determining and matching objects appearing within the video. Possibly the most important technique, however, is one which determines the presence or absence of a high-level or semantic feature, within a video clip or shot. By utilizing dozens, hundreds or even thousands of such semantic features we can support many kinds of content-based video navigation. Critically however, this depends on being able to determine whether each feature is or is not present in a video clip.
The last 5 years have seen much progress in the development of techniques to determine the presence of semantic features within video. This progress can be tracked in the annual TRECVid benchmarking activity where dozens of research groups measure the effectiveness of their techniques on common data and using an open, metrics-based approach. In this chapter we summarise the work
done on the TRECVid high-level feature task, showing the
progress made year-on-year. This provides a fairly comprehensive statement on where the state-of-the-art is regarding this important task, not just for one research group or for one approach, but across the spectrum. We then use this past and on-going work as a basis for highlighting the trends that are emerging in this area, and the questions which remain to be addressed before we can
achieve large-scale, fast and reliable high-level feature detection on video
Macromolecules in the Bayer Process
This is the publisher's version, also available electronically from http://www.degruyter.com/view/j/revce.2003.19.5/revce.2003.19.5.431/revce.2003.19.5.431.xml.See article for abstract
- ā¦