10 research outputs found

    БВРУКВУРНАЯ ΠœΠžΠ”Π˜Π€Π˜ΠšΠΠ¦Π˜Π― ΠΠžΠ’ΠžΠžΠ‘Π ΠΠ—ΠžΠ’ΠΠΠ˜Π™ Π’ Π¦Π•ΠœΠ•ΠΠ’ΠΠžΠ™ ΠœΠΠ’Π Π˜Π¦Π• Π‘ Π˜Π‘ΠŸΠžΠ›Π¬Π—ΠžΠ’ΠΠΠ˜Π•Πœ Π”Π˜Π‘ΠŸΠ•Π Π‘Π˜Π˜ Π£Π“Π›Π•Π ΠžΠ”ΠΠ«Π₯ ΠΠΠΠžΠ’Π Π£Π‘ΠžΠš И ΠΠΠΠžΠšΠ Π•ΠœΠΠ•Π—Π•ΠœΠ

    Get PDF
    Complex nanodispersed systems with multi-walled carbon nanotubes and nanodispersed silica have a significant impact on the processes of hydration, hardening and strength gain of construction composites predetermining their durability. While using a scanning electron microscope with an attachment for X-ray microanalysis and a device for infrared spectral analysis investigations have shown that the main effect of the cement matrix modification in the case of adding complex nanodispersed systems is provided by direct influence of hydration processes with subsequent crystallization of new formations. It has been noted that while adding carbon nanotube dispersion and nanosized silica a binding matrix is structured in the form of an extremely dense shell from crystalline hydrate new formations on the surface of solid phases that provides strong binding matrix in cement concrete. The addition effect of carbon nanotubes has been analyzed and quantitatively assessed through an investigation for every case of one sample with nanotubes and one sample without them with the help of a nanoindenter and scanning electron microscope. It is necessary to solve rather complicated challenging task in order to assess quantitatively the addition effect of CNT on material characteristics at a micromechanical level. At the same time it is possible to investigate surface of a concrete sample with one-micron resolution. In this case it is necessary to prepare samples for nanoindentation with exclusion of all CNT defectable effects that have been shown by a SEM. So in this case more adequate method for assessment must be a picoindenter , which combines a test method for nanoindentation with an optical SEM potential. Such equipment is in the stage of in-situ testing process at the Vienna University of Technology. The investigation is based on the fact that the main modification effect of mineral binding matrix while using incorporated complex nanodispersed systems and nanosilica is ensured by a direct influence of hydration processes and subsequent crystallization of new formations. Scanning electron microscopy and X-ray microanalysis with detection in IR spectra have revealed that adding of multi-walled carbon nanotubes dispersion together with nanodispersed silica provides structuring of rather dense shell of hydrated new formations along cement matrix on the surface of solid phase. The structured interfacial layers form separate cells in the modified cement matrix that ensures a formation of extremely filled system and predetermines structural strengthening of the modified cement matrix due to formation of spatial packaging. Consequently, the main factor increasing characteristics of cement concrete which is modified with carbon nanotubes and nanosilica is a structural modification of calcium hydrosilicates with relation to composition and morphology of new formations.ΠšΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½Ρ‹Π΅ нанодиспСрсныС систСмы с многослойными ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π½Ρ‹ΠΌΠΈ Π½Π°Π½ΠΎΡ‚Ρ€ΡƒΠ±ΠΊΠ°ΠΌΠΈ ΠΈ Π½Π°Π½ΠΎΠΊΡ€Π΅ΠΌΠ½Π΅Π·Π΅ΠΌΠΎΠΌ ΠΈΠΌΠ΅ΡŽΡ‚ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ влияниС Π½Π° процСссы Π³ΠΈΠ΄Ρ€Π°Ρ‚Π°Ρ†ΠΈΠΈ, твСрдСния, Π½Π°Π±ΠΎΡ€Π° прочности ΡΡ‚Ρ€ΠΎΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚ΠΎΠ², прСдопрСдСляя ΠΈΡ… Π΄ΠΎΠ»Π³ΠΎΠ²Π΅Ρ‡Π½ΠΎΡΡ‚ΡŒ. ИсслСдования с использованиСм ΡΠΊΠ°Π½ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ элСктронного микроскопа ΠΈ Π₯-Π»ΡƒΡ‡Π΅Π²ΠΎΠ³ΠΎ ΠΌΠΈΠΊΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·Π° с ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π² инфракрасном спСктрС ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, Ρ‡Ρ‚ΠΎ Π³Π»Π°Π²Π½Ρ‹ΠΉ эффСкт ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ Π² случаС добавлСния комплСксных нанодиспСрсных систСм обСспСчиваСтся Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½Ρ‹ΠΌ влияниСм процСссов Π³ΠΈΠ΄Ρ€Π°Ρ‚Π°Ρ†ΠΈΠΈ с ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΉ кристаллизациСй Π½ΠΎΠ²ΠΎΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ. УстановлСно, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ Π΄ΠΎΠ±Π°Π²Π»Π΅Π½ΠΈΠΈ диспСрсии ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π½Ρ‹Ρ… Π½Π°Π½ΠΎΡ‚Ρ€ΡƒΠ±ΠΎΠΊ ΠΈ Π½Π°Π½ΠΎΠΊΡ€Π΅ΠΌΠ½Π΅Π·Π΅ΠΌΠ° формируСтся структурная ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π° Π² Π²ΠΈΠ΄Π΅ Ρ‡Ρ€Π΅Π·Π²Ρ‹Ρ‡Π°ΠΉΠ½ΠΎ ΠΏΠ»ΠΎΡ‚Π½ΠΎΠΉ ΠΎΠ±ΠΎΠ»ΠΎΡ‡ΠΊΠΈ ΠΈΠ· кристаллогидратных Π½ΠΎΠ²ΠΎΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ Π½Π° повСрхности Ρ‚Π²Π΅Ρ€Π΄ΠΎΠΉ Ρ„Π°Π·Ρ‹, Ρ‡Ρ‚ΠΎ обСспСчиваСт ΠΏΡ€ΠΎΡ‡Π½ΡƒΡŽ Π²ΡΠΆΡƒΡ‰ΡƒΡŽ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρƒ Π² Ρ†Π΅ΠΌΠ΅Π½Ρ‚Π½ΠΎΠΌ Π±Π΅Ρ‚ΠΎΠ½Π΅. Π­Ρ„Ρ„Π΅ΠΊΡ‚ добавлСния ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π½Ρ‹Ρ… Π½Π°Π½ΠΎΡ‚Ρ€ΡƒΠ±ΠΎΠΊ анализировался ΠΈ количСствСнно оцСнивался исслСдованиСм Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΌ случаС ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΎΠ±Ρ€Π°Π·Ρ†Π° с Π½Π°Π½ΠΎΡ‚Ρ€ΡƒΠ±ΠΊΠ°ΠΌΠΈ ΠΈ ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π±Π΅Π· Π½ΠΈΡ… с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π½Π°Π½ΠΎΠΈΠ½Π΄Π΅Π½Ρ‚ΠΎΡ€Π° ΠΈ ΡΠΊΠ°Π½ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ элСктронного микроскопа. Π§Ρ‚ΠΎΠ±Ρ‹ количСствСнно ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ эффСкт Π΄ΠΎΠ±Π°Π²ΠΊΠΈ ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π½Ρ‹Ρ… Π½Π°Π½ΠΎΡ‚Ρ€ΡƒΠ±ΠΎΠΊ Π½Π° характСристики ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° Π½Π° микромСханичСском ΡƒΡ€ΠΎΠ²Π½Π΅, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ Ρ€Π΅ΡˆΠΈΡ‚ΡŒ ΡΠ»ΠΎΠΆΠ½ΡƒΡŽ Π·Π°Π΄Π°Ρ‡Ρƒ. Π’ Ρ‚ΠΎ ΠΆΠ΅ врСмя Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚ΡŒ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ Π±Π΅Ρ‚ΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΎΠ±Ρ€Π°Π·Ρ†Π° с Ρ€Π°Π·Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ΠΌ Π² 1 ΠΌΠΈΠΊΡ€ΠΎΠ½. ΠŸΡ€ΠΈ этом Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠ° ΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΠ° ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² для наноиндСнтирования с ΠΈΡΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ΠΌ всСх эффСктов дСфСктности ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π½Ρ‹Ρ… Π½Π°Π½ΠΎΡ‚Ρ€ΡƒΠ±ΠΎΠΊ, ΠΏΠΎΠΊΠ°Π·Π°Π½Π½Ρ‹Ρ… ΡΠΊΠ°Π½ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΌ элСктронным микроскопом. ВмСстС с Ρ‚Π΅ΠΌ, Π±ΠΎΠ»Π΅Π΅ Π°Π΄Π΅ΠΊΠ²Π°Ρ‚Π½Ρ‹ΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ оцСнивания Π² Π΄Π°Π½Π½ΠΎΠΌ случаС Π΄ΠΎΠ»ΠΆΠ΅Π½ Π±Ρ‹Ρ‚ΡŒ ΠΏΠΈΠΊΠΎΠΈΠ½Π΄Π΅Π½Ρ‚ΠΎΡ€, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΡƒΠ΅Ρ‚ ΠΈΡΠΏΡ‹Ρ‚Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ наноиндСнтирования с оптичСским ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΠΎΠΌ ΡΠΊΠ°Π½ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ микроскопа. Π’Π°ΠΊΠΎΠ΅ ΠΎΠ±ΠΎΡ€ΡƒΠ΄ΠΎΠ²Π°Π½ΠΈΠ΅ находится Π² стадии ΠΏΠΎΠ»Π΅Π²Ρ‹Ρ… испытаний Π² ВСнском тСхничСском унивСрситСтС. ИсслСдованиС основано Π½Π° Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ Π³Π»Π°Π²Π½Ρ‹ΠΉ эффСкт модифицирования ΠΌΠΈΠ½Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ вяТущСй ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ с использованиСм Π²ΠΊΠ»ΡŽΡ‡Π΅Π½Π½Ρ‹Ρ… комплСксных нанодиспСрсных систСм ΠΈ Π½Π°Π½ΠΎΠΊΡ€Π΅ΠΌΠ½Π΅Π·Π΅ΠΌΠ° обСспСчиваСтся нСпосрСдствСнным влияниСм процСссов Π³ΠΈΠ΄Ρ€Π°Ρ‚Π°Ρ†ΠΈΠΈ ΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΉ кристаллизациСй Π½ΠΎΠ²ΠΎΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ. Π‘ΠΊΠ°Π½ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΉ элСктронный микроскоп ΠΈ Π₯-Π»ΡƒΡ‡Π΅Π²ΠΎΠΉ ΠΌΠΈΠΊΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ· с ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π² инфракрасном спСктрС ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, Ρ‡Ρ‚ΠΎ Π²Π²Π΅Π΄Π΅Π½ΠΈΠ΅ диспСрсии многослойных ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π½Ρ‹Ρ… Π½Π°Π½ΠΎΡ‚Ρ€ΡƒΠ±ΠΎΠΊ совмСстно с Π½Π°Π½ΠΎΠΊΡ€Π΅ΠΌΠ½Π΅Π·Π΅ΠΌΠΎΠΌ обСспСчиваСт построСниС вдоль Ρ†Π΅ΠΌΠ΅Π½Ρ‚Π½ΠΎΠΉ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ ΠΎΡ‡Π΅Π½ΡŒ ΠΏΠ»ΠΎΡ‚Π½ΠΎΠΉ ΠΎΠ±ΠΎΠ»ΠΎΡ‡ΠΊΠΈ вновь ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Π³ΠΈΠ΄Ρ€Π°Ρ‚ΠΎΠ² Π½Π° повСрхности Ρ‚Π²Π΅Ρ€Π΄ΠΎΠΉ Ρ„Π°Π·Ρ‹. Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ повСрхностныС слои Ρ„ΠΎΡ€ΠΌΠΈΡ€ΡƒΡŽΡ‚ ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹Π΅ ячСйки Π² ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ Ρ†Π΅ΠΌΠ΅Π½Ρ‚Π½ΠΎΠΉ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π΅, Ρ‡Ρ‚ΠΎ обСспСчиваСт Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΡ€Π΅Π΄Π΅Π»ΡŒΠ½ΠΎ Π½Π°ΠΏΠΎΠ»Π½Π΅Π½Π½ΠΎΠΉ систСмы ΠΈ прСдопрСдСляСт структуры ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ Ρ†Π΅ΠΌΠ΅Π½Ρ‚Π½ΠΎΠΉ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ благодаря Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡŽ пространствСнной ΡƒΠΏΠ°ΠΊΠΎΠ²ΠΊΠΈ. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, основным Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠΌ, ΠΏΠΎΠ²Ρ‹ΡˆΠ°ΡŽΡ‰ΠΈΠΌ характСристики Ρ†Π΅ΠΌΠ΅Π½Ρ‚Π½ΠΎΠ³ΠΎ Π±Π΅Ρ‚ΠΎΠ½Π°, ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π½Ρ‹ΠΌΠΈ Π½Π°Π½ΠΎΡ‚Ρ€ΡƒΠ±ΠΊΠ°ΠΌΠΈ ΠΈ Π½Π°Π½ΠΎΠΊΡ€Π΅ΠΌΠ½Π΅Π·Π΅ΠΌΠΎΠΌ, являСтся структурная модификация гидросиликатов ΠΊΠ°Π»ΡŒΡ†ΠΈΡ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ†ΠΈΠΈ ΠΈ ΠΌΠΎΡ€Ρ„ΠΎΠ»ΠΎΠ³ΠΈΠΈ Π½ΠΎΠ²ΠΎΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ

    Бтруктурная модификация Π½ΠΎΠ²ΠΎΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ Π² Ρ†Π΅ΠΌΠ΅Π½Ρ‚Π½ΠΎΠΉ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π΅ с использованиСм диспСрсии ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π½Ρ‹Ρ… Π½Π°Π½ΠΎΡ‚Ρ€ΡƒΠ±ΠΎΠΊ ΠΈ Π½Π°Π½ΠΎΠΊΡ€Π΅ΠΌΠ½Π΅Π·Π΅ΠΌΠ°

    Get PDF
    Complex nanodispersed systems with multi-walled carbon nanotubes and nanodispersed silica have a significant impact on the processes of hydration, hardening and strength gain of construction composites predetermining their durability. While using a scanning electron microscope with an attachment for X-ray microanalysis and a device for infrared spectral analysis investigations have shown that the main effect of the cement matrix modification in the case of adding complex nanodispersed systems is provided by direct influence of hydration processes with subsequent crystallization of new formations. It has been noted that while adding carbon nanotube dispersion and nanosized silica a binding matrix is structured in the form of an extremely dense shell from crystalline hydrate new formations on the surface of solid phases that provides strong binding matrix in cement concrete. The addition effect of carbon nanotubes has been analyzed and quantitatively assessed through an investigation for every case of one sample with nanotubes and one sample without them with the help of a nanoindenter and scanning electron microscope. It is necessary to solve rather complicated challenging task in order to assess quantitatively the addition effect of CNT on material characteristics at a micromechanical level. At the same time it is possible to investigate surface of a concrete sample with one-micron resolution. In this case it is necessary to prepare samples for nanoindentation with exclusion of all CNT defectable effects that have been shown by a SEM. So in this case more adequate method for assessment must be a picoindenter , which combines a test method for nanoindentation with an optical SEM potential. Such equipment is in the stage of in-situ testing process at the Vienna University of Technology. The investigation is based on the fact that the main modification effect of mineral binding matrix while using incorporated complex nanodispersed systems and nanosilica is ensured by a direct influence of hydration processes and subsequent crystallization of new formations. Scanning electron microscopy and X-ray microanalysis with detection in IR spectra have revealed that adding of multi-walled carbon nanotubes dispersion together with nanodispersed silica provides structuring of rather dense shell of hydrated new formations along cement matrix on the surface of solid phase. The structured interfacial layers form separate cells in the modified cement matrix that ensures a formation of extremely filled system and predetermines structural strengthening of the modified cement matrix due to formation of spatial packaging. Consequently, the main factor increasing characteristics of cement concrete which is modified with carbon nanotubes and nanosilica is a structural modification of calcium hydrosilicates with relation to composition and morphology of new formations

    Бтруктурная модификация Π½ΠΎΠ²ΠΎΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ Π² Ρ†Π΅ΠΌΠ΅Π½Ρ‚Π½ΠΎΠΉ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π΅ с использованиСм диспСрсии ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π½Ρ‹Ρ… Π½Π°Π½ΠΎΡ‚Ρ€ΡƒΠ±ΠΎΠΊ ΠΈ Π½Π°Π½ΠΎΠΊΡ€Π΅ΠΌΠ½Π΅Π·Π΅ΠΌΠ°

    No full text
    Complex nanodispersed systems with multi-walled carbon nanotubes and nanodispersed silica have a significant impact on the processes of hydration, hardening and strength gain of construction composites predetermining their durability. While using a scanning electron microscope with an attachment for X-ray microanalysis and a device for infrared spectral analysis investigations have shown that the main effect of the cement matrix modification in the case of adding complex nanodispersed systems is provided by direct influence of hydration processes with subsequent crystallization of new formations. It has been noted that while adding carbon nanotube dispersion and nanosized silica a binding matrix is structured in the form of an extremely dense shell from crystalline hydrate new formations on the surface of solid phases that provides strong binding matrix in cement concrete. The addition effect of carbon nanotubes has been analyzed and quantitatively assessed through an investigation for every case of one sample with nanotubes and one sample without them with the help of a nanoindenter and scanning electron microscope. It is necessary to solve rather complicated challenging task in order to assess quantitatively the addition effect of CNT on material characteristics at a micromechanical level. At the same time it is possible to investigate surface of a concrete sample with one-micron resolution. In this case it is necessary to prepare samples for nanoindentation with exclusion of all CNT defectable effects that have been shown by a SEM. So in this case more adequate method for assessment must be a picoindenter , which combines a test method for nanoindentation with an optical SEM potential. Such equipment is in the stage of in-situ testing process at the Vienna University of Technology. The investigation is based on the fact that the main modification effect of mineral binding matrix while using incorporated complex nanodispersed systems and nanosilica is ensured by a direct influence of hydration processes and subsequent crystallization of new formations. Scanning electron microscopy and X-ray microanalysis with detection in IR spectra have revealed that adding of multi-walled carbon nanotubes dispersion together with nanodispersed silica provides structuring of rather dense shell of hydrated new formations along cement matrix on the surface of solid phase. The structured interfacial layers form separate cells in the modified cement matrix that ensures a formation of extremely filled system and predetermines structural strengthening of the modified cement matrix due to formation of spatial packaging. Consequently, the main factor increasing characteristics of cement concrete which is modified with carbon nanotubes and nanosilica is a structural modification of calcium hydrosilicates with relation to composition and morphology of new formations

    Concrete Production Using Technogenical, Constructional and Domestic Waste

    No full text
    <p>The article describes investigations carried out by the scientists from various countries in order to improve the physical and mechanical properties of concrete. The grained rubber of tyres, modified sawdust, crushed ceramic bricks, plastic waste and remains of glass are utilised to produce concrete mixtures. The results of research conducted by the scientists show that in the process of producing concrete we can use different types of waste to change natural aggregates and to get concrete with specific properties. Currently, waste handling and utilization are burning ecological problems. Therefore, intensive investigations are carried out in order to utilise technogenical, constructional and domestic waste for concrete mixtures.Β </p><div class="nav_keywords"><p>Article in Lithuanian</p></div

    Mechanical properties of self-compacting concrete reinforced with polypropylene fibres

    No full text
    The properties of hardened concrete can be significantly improved by fibres. However, the addition of fibres to fresh concrete results in a loss of workability. Self-compacting concrete (SCC) is an innovative concrete that is able to flow under its own weight, completely filling formwork and achieving full compaction without vibration. In the present study, the workability and mechanical properties of SCC with fly ash reinforced with monofilament polypropylene fibres were investigated. Two cement contents at 350 and 450 kg m-3 were studied as well with four fibre contents at 3, 6, 9 and 12 kg m-3. The water/cement ratio, fly ash and superplasticiser contents were kept constant at 0 40, 120 kg m-3 and 1% of cement content respectively. Slump flow, J ring, V funnel and air content tests were conducted for evaluating the fluidity, filling ability and segregation risk of the fresh concretes. Unit weight, compressive strength, splitting tensile strength, flexural strength, pulse velocity and elasticity modulus of concrete were determined. The materials used in this study exhibit no problems with mixing or workability when the fibre distribution is uniform. The polypropylene fibres enhance the strength of SCC significantly, without causing well known problems associated with steel fibres. Β© W. S. Maney &amp; Son Ltd. 2011
    corecore