10 research outputs found
Π‘Π’Π Π£ΠΠ’Π£Π ΠΠΠ― ΠΠΠΠΠ€ΠΠΠΠ¦ΠΠ― ΠΠΠΠΠΠΠ ΠΠΠΠΠΠΠΠ Π Π¦ΠΠΠΠΠ’ΠΠΠ ΠΠΠ’Π ΠΠ¦Π Π‘ ΠΠ‘ΠΠΠΠ¬ΠΠΠΠΠΠΠΠ ΠΠΠ‘ΠΠΠ Π‘ΠΠ Π£ΠΠΠΠ ΠΠΠΠ«Π₯ ΠΠΠΠΠ’Π Π£ΠΠΠ Π ΠΠΠΠΠΠ ΠΠΠΠΠΠΠΠ
Complex nanodispersed systems with multi-walled carbon nanotubes and nanodispersed silica have a significant impact on the processes of hydration, hardening and strength gain of construction composites predetermining their durability. While using a scanning electron microscope with an attachment for X-ray microanalysis and a device for infrared spectral analysis investigations have shown that the main effect of the cement matrix modification in the case of adding complex nanodispersed systems is provided by direct influence of hydration processes with subsequent crystallization of new formations. It has been noted that while adding carbon nanotube dispersion and nanosized silica a binding matrix is structured in the form of an extremely dense shell from crystalline hydrate new formations on the surface of solid phases that provides strong binding matrix in cement concrete. The addition effect of carbon nanotubes has been analyzed and quantitatively assessed through an investigation for every case of one sample with nanotubes and one sample without them with the help of a nanoindenter and scanning electron microscope. It is necessary to solve rather complicated challenging task in order to assess quantitatively the addition effect of CNT on material characteristics at a micromechanical level. At the same time it is possible to investigate surface of a concrete sample with one-micron resolution. In this case it is necessary to prepare samples for nanoindentation with exclusion of all CNT defectable effects that have been shown by a SEM. So in this case more adequate method for assessment must be a picoindenter , which combines a test method for nanoindentation with an optical SEM potential. Such equipment is in the stage of in-situ testing process at the Vienna University of Technology. The investigation is based on the fact that the main modification effect of mineral binding matrix while using incorporated complex nanodispersed systems and nanosilica is ensured by a direct influence of hydration processes and subsequent crystallization of new formations. Scanning electron microscopy and X-ray microanalysis with detection in IR spectra have revealed that adding of multi-walled carbon nanotubes dispersion together with nanodispersed silica provides structuring of rather dense shell of hydrated new formations along cement matrix on the surface of solid phase. The structured interfacial layers form separate cells in the modified cement matrix that ensures a formation of extremely filled system and predetermines structural strengthening of the modified cement matrix due to formation of spatial packaging. Consequently, the main factor increasing characteristics of cement concrete which is modified with carbon nanotubes and nanosilica is a structural modification of calcium hydrosilicates with relation to composition and morphology of new formations.ΠΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΡΠ΅ Π½Π°Π½ΠΎΠ΄ΠΈΡΠΏΠ΅ΡΡΠ½ΡΠ΅ ΡΠΈΡΡΠ΅ΠΌΡ Ρ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»ΠΎΠΉΠ½ΡΠΌΠΈ ΡΠ³Π»Π΅ΡΠΎΠ΄Π½ΡΠΌΠΈ Π½Π°Π½ΠΎΡΡΡΠ±ΠΊΠ°ΠΌΠΈ ΠΈ Π½Π°Π½ΠΎΠΊΡΠ΅ΠΌΠ½Π΅Π·Π΅ΠΌΠΎΠΌ ΠΈΠΌΠ΅ΡΡ Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π²Π»ΠΈΡΠ½ΠΈΠ΅ Π½Π° ΠΏΡΠΎΡΠ΅ΡΡΡ Π³ΠΈΠ΄ΡΠ°ΡΠ°ΡΠΈΠΈ, ΡΠ²Π΅ΡΠ΄Π΅Π½ΠΈΡ, Π½Π°Π±ΠΎΡΠ° ΠΏΡΠΎΡΠ½ΠΎΡΡΠΈ ΡΡΡΠΎΠΈΡΠ΅Π»ΡΠ½ΡΡ
ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠΎΠ², ΠΏΡΠ΅Π΄ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡ ΠΈΡ
Π΄ΠΎΠ»Π³ΠΎΠ²Π΅ΡΠ½ΠΎΡΡΡ. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΡΠΊΠ°Π½ΠΈΡΡΡΡΠ΅Π³ΠΎ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΌΠΈΠΊΡΠΎΡΠΊΠΎΠΏΠ° ΠΈ Π₯-Π»ΡΡΠ΅Π²ΠΎΠ³ΠΎ ΠΌΠΈΠΊΡΠΎΠ°Π½Π°Π»ΠΈΠ·Π° Ρ ΠΎΠ±Π½Π°ΡΡΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π² ΠΈΠ½ΡΡΠ°ΠΊΡΠ°ΡΠ½ΠΎΠΌ ΡΠΏΠ΅ΠΊΡΡΠ΅ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, ΡΡΠΎ Π³Π»Π°Π²Π½ΡΠΉ ΡΡΡΠ΅ΠΊΡ ΠΌΠΎΠ΄ΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ Π² ΡΠ»ΡΡΠ°Π΅ Π΄ΠΎΠ±Π°Π²Π»Π΅Π½ΠΈΡ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΡΡ
Π½Π°Π½ΠΎΠ΄ΠΈΡΠΏΠ΅ΡΡΠ½ΡΡ
ΡΠΈΡΡΠ΅ΠΌ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ²Π°Π΅ΡΡΡ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Π½ΡΠΌ Π²Π»ΠΈΡΠ½ΠΈΠ΅ΠΌ ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ² Π³ΠΈΠ΄ΡΠ°ΡΠ°ΡΠΈΠΈ Ρ ΠΏΠΎΡΠ»Π΅Π΄ΡΡΡΠ΅ΠΉ ΠΊΡΠΈΡΡΠ°Π»Π»ΠΈΠ·Π°ΡΠΈΠ΅ΠΉ Π½ΠΎΠ²ΠΎΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ ΠΏΡΠΈ Π΄ΠΎΠ±Π°Π²Π»Π΅Π½ΠΈΠΈ Π΄ΠΈΡΠΏΠ΅ΡΡΠΈΠΈ ΡΠ³Π»Π΅ΡΠΎΠ΄Π½ΡΡ
Π½Π°Π½ΠΎΡΡΡΠ±ΠΎΠΊ ΠΈ Π½Π°Π½ΠΎΠΊΡΠ΅ΠΌΠ½Π΅Π·Π΅ΠΌΠ° ΡΠΎΡΠΌΠΈΡΡΠ΅ΡΡΡ ΡΡΡΡΠΊΡΡΡΠ½Π°Ρ ΠΌΠ°ΡΡΠΈΡΠ° Π² Π²ΠΈΠ΄Π΅ ΡΡΠ΅Π·Π²ΡΡΠ°ΠΉΠ½ΠΎ ΠΏΠ»ΠΎΡΠ½ΠΎΠΉ ΠΎΠ±ΠΎΠ»ΠΎΡΠΊΠΈ ΠΈΠ· ΠΊΡΠΈΡΡΠ°Π»Π»ΠΎΠ³ΠΈΠ΄ΡΠ°ΡΠ½ΡΡ
Π½ΠΎΠ²ΠΎΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ Π½Π° ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠΈ ΡΠ²Π΅ΡΠ΄ΠΎΠΉ ΡΠ°Π·Ρ, ΡΡΠΎ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ²Π°Π΅Ρ ΠΏΡΠΎΡΠ½ΡΡ Π²ΡΠΆΡΡΡΡ ΠΌΠ°ΡΡΠΈΡΡ Π² ΡΠ΅ΠΌΠ΅Π½ΡΠ½ΠΎΠΌ Π±Π΅ΡΠΎΠ½Π΅. ΠΡΡΠ΅ΠΊΡ Π΄ΠΎΠ±Π°Π²Π»Π΅Π½ΠΈΡ ΡΠ³Π»Π΅ΡΠΎΠ΄Π½ΡΡ
Π½Π°Π½ΠΎΡΡΡΠ±ΠΎΠΊ Π°Π½Π°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π»ΡΡ ΠΈ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ ΠΎΡΠ΅Π½ΠΈΠ²Π°Π»ΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΎΠ±ΡΠ°Π·ΡΠ° Ρ Π½Π°Π½ΠΎΡΡΡΠ±ΠΊΠ°ΠΌΠΈ ΠΈ ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π±Π΅Π· Π½ΠΈΡ
Ρ ΠΏΠΎΠΌΠΎΡΡΡ Π½Π°Π½ΠΎΠΈΠ½Π΄Π΅Π½ΡΠΎΡΠ° ΠΈ ΡΠΊΠ°Π½ΠΈΡΡΡΡΠ΅Π³ΠΎ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΌΠΈΠΊΡΠΎΡΠΊΠΎΠΏΠ°. Π§ΡΠΎΠ±Ρ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ ΠΎΡΠ΅Π½ΠΈΡΡ ΡΡΡΠ΅ΠΊΡ Π΄ΠΎΠ±Π°Π²ΠΊΠΈ ΡΠ³Π»Π΅ΡΠΎΠ΄Π½ΡΡ
Π½Π°Π½ΠΎΡΡΡΠ±ΠΎΠΊ Π½Π° Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π° Π½Π° ΠΌΠΈΠΊΡΠΎΠΌΠ΅Ρ
Π°Π½ΠΈΡΠ΅ΡΠΊΠΎΠΌ ΡΡΠΎΠ²Π½Π΅, Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎ ΡΠ΅ΡΠΈΡΡ ΡΠ»ΠΎΠΆΠ½ΡΡ Π·Π°Π΄Π°ΡΡ. Π ΡΠΎ ΠΆΠ΅ Π²ΡΠ΅ΠΌΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΡ ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΡ Π±Π΅ΡΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΎΠ±ΡΠ°Π·ΡΠ° Ρ ΡΠ°Π·ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ΠΌ Π² 1 ΠΌΠΈΠΊΡΠΎΠ½. ΠΡΠΈ ΡΡΠΎΠΌ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠ° ΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠ° ΠΎΠ±ΡΠ°Π·ΡΠΎΠ² Π΄Π»Ρ Π½Π°Π½ΠΎΠΈΠ½Π΄Π΅Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ Ρ ΠΈΡΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅ΠΌ Π²ΡΠ΅Ρ
ΡΡΡΠ΅ΠΊΡΠΎΠ² Π΄Π΅ΡΠ΅ΠΊΡΠ½ΠΎΡΡΠΈ ΡΠ³Π»Π΅ΡΠΎΠ΄Π½ΡΡ
Π½Π°Π½ΠΎΡΡΡΠ±ΠΎΠΊ, ΠΏΠΎΠΊΠ°Π·Π°Π½Π½ΡΡ
ΡΠΊΠ°Π½ΠΈΡΡΡΡΠΈΠΌ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΡΠΌ ΠΌΠΈΠΊΡΠΎΡΠΊΠΎΠΏΠΎΠΌ. ΠΠΌΠ΅ΡΡΠ΅ Ρ ΡΠ΅ΠΌ, Π±ΠΎΠ»Π΅Π΅ Π°Π΄Π΅ΠΊΠ²Π°ΡΠ½ΡΠΌ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΎΡΠ΅Π½ΠΈΠ²Π°Π½ΠΈΡ Π² Π΄Π°Π½Π½ΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ Π΄ΠΎΠ»ΠΆΠ΅Π½ Π±ΡΡΡ ΠΏΠΈΠΊΠΎΠΈΠ½Π΄Π΅Π½ΡΠΎΡ, ΠΊΠΎΡΠΎΡΡΠΉ ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡΡΠ΅Ρ ΠΈΡΠΏΡΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΉ ΠΌΠ΅ΡΠΎΠ΄ Π½Π°Π½ΠΎΠΈΠ½Π΄Π΅Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ Ρ ΠΎΠΏΡΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΠΎΠΌ ΡΠΊΠ°Π½ΠΈΡΡΡΡΠ΅Π³ΠΎ ΠΌΠΈΠΊΡΠΎΡΠΊΠΎΠΏΠ°. Π’Π°ΠΊΠΎΠ΅ ΠΎΠ±ΠΎΡΡΠ΄ΠΎΠ²Π°Π½ΠΈΠ΅ Π½Π°Ρ
ΠΎΠ΄ΠΈΡΡΡ Π² ΡΡΠ°Π΄ΠΈΠΈ ΠΏΠΎΠ»Π΅Π²ΡΡ
ΠΈΡΠΏΡΡΠ°Π½ΠΈΠΉ Π² ΠΠ΅Π½ΡΠΊΠΎΠΌ ΡΠ΅Ρ
Π½ΠΈΡΠ΅ΡΠΊΠΎΠΌ ΡΠ½ΠΈΠ²Π΅ΡΡΠΈΡΠ΅ΡΠ΅. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΎ Π½Π° ΡΠΎΠΌ, ΡΡΠΎ Π³Π»Π°Π²Π½ΡΠΉ ΡΡΡΠ΅ΠΊΡ ΠΌΠΎΠ΄ΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΌΠΈΠ½Π΅ΡΠ°Π»ΡΠ½ΠΎΠΉ Π²ΡΠΆΡΡΠ΅ΠΉ ΠΌΠ°ΡΡΠΈΡΡ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π²ΠΊΠ»ΡΡΠ΅Π½Π½ΡΡ
ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΡΡ
Π½Π°Π½ΠΎΠ΄ΠΈΡΠΏΠ΅ΡΡΠ½ΡΡ
ΡΠΈΡΡΠ΅ΠΌ ΠΈ Π½Π°Π½ΠΎΠΊΡΠ΅ΠΌΠ½Π΅Π·Π΅ΠΌΠ° ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ²Π°Π΅ΡΡΡ Π½Π΅ΠΏΠΎΡΡΠ΅Π΄ΡΡΠ²Π΅Π½Π½ΡΠΌ Π²Π»ΠΈΡΠ½ΠΈΠ΅ΠΌ ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ² Π³ΠΈΠ΄ΡΠ°ΡΠ°ΡΠΈΠΈ ΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΡΡΡΠ΅ΠΉ ΠΊΡΠΈΡΡΠ°Π»Π»ΠΈΠ·Π°ΡΠΈΠ΅ΠΉ Π½ΠΎΠ²ΠΎΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ. Π‘ΠΊΠ°Π½ΠΈΡΡΡΡΠΈΠΉ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΡΠΉ ΠΌΠΈΠΊΡΠΎΡΠΊΠΎΠΏ ΠΈ Π₯-Π»ΡΡΠ΅Π²ΠΎΠΉ ΠΌΠΈΠΊΡΠΎΠ°Π½Π°Π»ΠΈΠ· Ρ ΠΎΠ±Π½Π°ΡΡΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π² ΠΈΠ½ΡΡΠ°ΠΊΡΠ°ΡΠ½ΠΎΠΌ ΡΠΏΠ΅ΠΊΡΡΠ΅ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, ΡΡΠΎ Π²Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π΄ΠΈΡΠΏΠ΅ΡΡΠΈΠΈ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»ΠΎΠΉΠ½ΡΡ
ΡΠ³Π»Π΅ΡΠΎΠ΄Π½ΡΡ
Π½Π°Π½ΠΎΡΡΡΠ±ΠΎΠΊ ΡΠΎΠ²ΠΌΠ΅ΡΡΠ½ΠΎ Ρ Π½Π°Π½ΠΎΠΊΡΠ΅ΠΌΠ½Π΅Π·Π΅ΠΌΠΎΠΌ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ²Π°Π΅Ρ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ Π²Π΄ΠΎΠ»Ρ ΡΠ΅ΠΌΠ΅Π½ΡΠ½ΠΎΠΉ ΠΌΠ°ΡΡΠΈΡΡ ΠΎΡΠ΅Π½Ρ ΠΏΠ»ΠΎΡΠ½ΠΎΠΉ ΠΎΠ±ΠΎΠ»ΠΎΡΠΊΠΈ Π²Π½ΠΎΠ²Ρ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½Π½ΡΡ
Π³ΠΈΠ΄ΡΠ°ΡΠΎΠ² Π½Π° ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠΈ ΡΠ²Π΅ΡΠ΄ΠΎΠΉ ΡΠ°Π·Ρ. Π‘ΡΡΡΠΊΡΡΡΠΈΡΠΎΠ²Π°Π½Π½ΡΠ΅ ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠ½ΡΠ΅ ΡΠ»ΠΎΠΈ ΡΠΎΡΠΌΠΈΡΡΡΡ ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΠ΅ ΡΡΠ΅ΠΉΠΊΠΈ Π² ΠΌΠΎΠ΄ΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ ΡΠ΅ΠΌΠ΅Π½ΡΠ½ΠΎΠΉ ΠΌΠ°ΡΡΠΈΡΠ΅, ΡΡΠΎ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ²Π°Π΅Ρ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΡΠ΅Π΄Π΅Π»ΡΠ½ΠΎ Π½Π°ΠΏΠΎΠ»Π½Π΅Π½Π½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ ΠΈ ΠΏΡΠ΅Π΄ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅Ρ ΡΡΡΡΠΊΡΡΡΡ ΠΌΠΎΠ΄ΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ ΡΠ΅ΠΌΠ΅Π½ΡΠ½ΠΎΠΉ ΠΌΠ°ΡΡΠΈΡΡ Π±Π»Π°Π³ΠΎΠ΄Π°ΡΡ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΡΠΏΠ°ΠΊΠΎΠ²ΠΊΠΈ. Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΠΎΡΠ½ΠΎΠ²Π½ΡΠΌ ΡΠ°ΠΊΡΠΎΡΠΎΠΌ, ΠΏΠΎΠ²ΡΡΠ°ΡΡΠΈΠΌ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ ΡΠ΅ΠΌΠ΅Π½ΡΠ½ΠΎΠ³ΠΎ Π±Π΅ΡΠΎΠ½Π°, ΠΌΠΎΠ΄ΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΡΠ³Π»Π΅ΡΠΎΠ΄Π½ΡΠΌΠΈ Π½Π°Π½ΠΎΡΡΡΠ±ΠΊΠ°ΠΌΠΈ ΠΈ Π½Π°Π½ΠΎΠΊΡΠ΅ΠΌΠ½Π΅Π·Π΅ΠΌΠΎΠΌ, ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΡΡΡΠΊΡΡΡΠ½Π°Ρ ΠΌΠΎΠ΄ΠΈΡΠΈΠΊΠ°ΡΠΈΡ Π³ΠΈΠ΄ΡΠΎΡΠΈΠ»ΠΈΠΊΠ°ΡΠΎΠ² ΠΊΠ°Π»ΡΡΠΈΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠΈΠΈ ΠΈ ΠΌΠΎΡΡΠΎΠ»ΠΎΠ³ΠΈΠΈ Π½ΠΎΠ²ΠΎΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ
Π‘ΡΡΡΠΊΡΡΡΠ½Π°Ρ ΠΌΠΎΠ΄ΠΈΡΠΈΠΊΠ°ΡΠΈΡ Π½ΠΎΠ²ΠΎΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ Π² ΡΠ΅ΠΌΠ΅Π½ΡΠ½ΠΎΠΉ ΠΌΠ°ΡΡΠΈΡΠ΅ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π΄ΠΈΡΠΏΠ΅ΡΡΠΈΠΈ ΡΠ³Π»Π΅ΡΠΎΠ΄Π½ΡΡ Π½Π°Π½ΠΎΡΡΡΠ±ΠΎΠΊ ΠΈ Π½Π°Π½ΠΎΠΊΡΠ΅ΠΌΠ½Π΅Π·Π΅ΠΌΠ°
Complex nanodispersed systems with multi-walled carbon nanotubes and nanodispersed silica have a significant impact on the processes of hydration, hardening and strength gain of construction composites predetermining their durability. While using a scanning electron microscope with an attachment for X-ray microanalysis and a device for infrared spectral analysis investigations have shown that the main effect of the cement matrix modification in the case of adding complex nanodispersed systems is provided by direct influence of hydration processes with subsequent crystallization of new formations. It has been noted that while adding carbon nanotube dispersion and nanosized silica a binding matrix is structured in the form of an extremely dense shell from crystalline hydrate new formations on the surface of solid phases that provides strong binding matrix in cement concrete. The addition effect of carbon nanotubes has been analyzed and quantitatively assessed through an investigation for every case of one sample with nanotubes and one sample without them with the help of a nanoindenter and scanning electron microscope. It is necessary to solve rather complicated challenging task in order to assess quantitatively the addition effect of CNT on material characteristics at a micromechanical level. At the same time it is possible to investigate surface of a concrete sample with one-micron resolution. In this case it is necessary to prepare samples for nanoindentation with exclusion of all CNT defectable effects that have been shown by a SEM. So in this case more adequate method for assessment must be a picoindenter , which combines a test method for nanoindentation with an optical SEM potential.
Such equipment is in the stage of in-situ testing process at the Vienna University of Technology. The investigation is based on the fact that the main modification effect of mineral binding matrix while using incorporated complex nanodispersed systems and nanosilica is ensured by a direct influence of hydration processes and subsequent crystallization of new formations. Scanning electron microscopy and X-ray microanalysis with detection in IR spectra have revealed that adding of multi-walled carbon nanotubes dispersion together with nanodispersed silica provides structuring of rather dense shell of hydrated new formations along cement matrix on the surface of solid phase. The structured interfacial layers form separate cells in the modified cement matrix that ensures a formation of extremely filled system and predetermines structural strengthening
of the modified cement matrix due to formation of spatial packaging. Consequently, the main factor increasing characteristics of cement concrete which is modified with carbon nanotubes and nanosilica is a structural modification of calcium hydrosilicates with relation to composition and morphology of new formations
Π‘ΡΡΡΠΊΡΡΡΠ½Π°Ρ ΠΌΠΎΠ΄ΠΈΡΠΈΠΊΠ°ΡΠΈΡ Π½ΠΎΠ²ΠΎΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ Π² ΡΠ΅ΠΌΠ΅Π½ΡΠ½ΠΎΠΉ ΠΌΠ°ΡΡΠΈΡΠ΅ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π΄ΠΈΡΠΏΠ΅ΡΡΠΈΠΈ ΡΠ³Π»Π΅ΡΠΎΠ΄Π½ΡΡ Π½Π°Π½ΠΎΡΡΡΠ±ΠΎΠΊ ΠΈ Π½Π°Π½ΠΎΠΊΡΠ΅ΠΌΠ½Π΅Π·Π΅ΠΌΠ°
Complex nanodispersed systems with multi-walled carbon nanotubes and nanodispersed silica have a significant impact on the processes of hydration, hardening and strength gain of construction composites predetermining their durability. While using a scanning electron microscope with an attachment for X-ray microanalysis and a device for infrared spectral analysis investigations have shown that the main effect of the cement matrix modification in the case of adding complex nanodispersed systems is provided by direct influence of hydration processes with subsequent crystallization of new formations. It has been noted that while adding carbon nanotube dispersion and nanosized silica a binding matrix is structured in the form of an extremely dense shell from crystalline hydrate new formations on the surface of solid phases that provides strong binding matrix in cement concrete. The addition effect of carbon nanotubes has been analyzed and quantitatively assessed through an investigation for every case of one sample with nanotubes and one sample without them with the help of a nanoindenter and scanning electron microscope. It is necessary to solve rather complicated challenging task in order to assess quantitatively the addition effect of CNT on material characteristics at a micromechanical level. At the same time it is possible to investigate surface of a concrete sample with one-micron resolution. In this case it is necessary to prepare samples for nanoindentation with exclusion of all CNT defectable effects that have been shown by a SEM. So in this case more adequate method for assessment must be a picoindenter , which combines a test method for nanoindentation with an optical SEM potential.
Such equipment is in the stage of in-situ testing process at the Vienna University of Technology. The investigation is based on the fact that the main modification effect of mineral binding matrix while using incorporated complex nanodispersed systems and nanosilica is ensured by a direct influence of hydration processes and subsequent crystallization of new formations. Scanning electron microscopy and X-ray microanalysis with detection in IR spectra have revealed that adding of multi-walled carbon nanotubes dispersion together with nanodispersed silica provides structuring of rather dense shell of hydrated new formations along cement matrix on the surface of solid phase. The structured interfacial layers form separate cells in the modified cement matrix that ensures a formation of extremely filled system and predetermines structural strengthening
of the modified cement matrix due to formation of spatial packaging. Consequently, the main factor increasing characteristics of cement concrete which is modified with carbon nanotubes and nanosilica is a structural modification of calcium hydrosilicates with relation to composition and morphology of new formations
Concrete Production Using Technogenical, Constructional and Domestic Waste
<p>The article describes investigations carried out by the scientists from various countries in order to improve the physical and mechanical properties of concrete. The grained rubber of tyres, modified sawdust, crushed ceramic bricks, plastic waste and remains of glass are utilised to produce concrete mixtures. The results of research conducted by the scientists show that in the process of producing concrete we can use different types of waste to change natural aggregates and to get concrete with specific properties. Currently, waste handling and utilization are burning ecological problems. Therefore, intensive investigations are carried out in order to utilise technogenical, constructional and domestic waste for concrete mixtures.Β </p><div class="nav_keywords"><p>Article in Lithuanian</p></div
Mechanical properties of self-compacting concrete reinforced with polypropylene fibres
The properties of hardened concrete can be significantly improved by fibres. However, the addition of fibres to fresh concrete results in a loss of workability. Self-compacting concrete (SCC) is an innovative concrete that is able to flow under its own weight, completely filling formwork and achieving full compaction without vibration. In the present study, the workability and mechanical properties of SCC with fly ash reinforced with monofilament polypropylene fibres were investigated. Two cement contents at 350 and 450 kg m-3 were studied as well with four fibre contents at 3, 6, 9 and 12 kg m-3. The water/cement ratio, fly ash and superplasticiser contents were kept constant at 0 40, 120 kg m-3 and 1% of cement content respectively. Slump flow, J ring, V funnel and air content tests were conducted for evaluating the fluidity, filling ability and segregation risk of the fresh concretes. Unit weight, compressive strength, splitting tensile strength, flexural strength, pulse velocity and elasticity modulus of concrete were determined. The materials used in this study exhibit no problems with mixing or workability when the fibre distribution is uniform. The polypropylene fibres enhance the strength of SCC significantly, without causing well known problems associated with steel fibres. Β© W. S. Maney & Son Ltd. 2011