1,267 research outputs found

    Clustering in a precipitate free GeMn magnetic semiconductor

    Get PDF
    We present the first study relating structural parameters of precipitate free Ge0.95Mn0.05 films to magnetisation data. Nanometer sized clusters - areas with increased Mn content on substitutional lattice sites compared to the host matrix - are detected in transmission electron microscopy (TEM) analysis. The films show no overall spontaneous magnetisation at all down to 2K. The TEM and magnetisation results are interpreted in terms of an assembly of superparamagnetic moments developing in the dense distribution of clusters. Each cluster individually turns ferromagnetic below an ordering temperature which depends on its volume and Mn content.Comment: accepted for publication in Phys. Rev. Lett. (2006). High resolution images ibide

    Interplay between the electrical transport properties of GeMn thin films and Ge substrates

    Get PDF
    We present evidence that electrical transport studies of epitaxial p-type GeMn thin films fabricated on high resistivity Ge substrates are severely influenced by parallel conduction through the substrate, related to the large intrinsic conductivity of Ge due to its small bandgap. Anomalous Hall measurements and large magneto resistance effects are completely understood by taking a dominating substrate contribution as well as the measurement geometry into account. It is shown that substrate conduction persists also for well conducting, degenerate, p-type thin films, giving rise to an effective two-layer conduction scheme. Using n-type Ge substrates, parallel conduction through the substrate can be reduced for the p-type epi-layers, as a consequence of the emerging pn-interface junction. GeMn thin films fabricated on these substrates exhibit a negligible magneto resistance effect. Our study underlines the importance of a thorough characterization and understanding of possible substrate contributions for electrical transport studies of GeMn thin films.Comment: 9 pages, 9 figure

    Option pricing under stochastic volatility: the exponential Ornstein-Uhlenbeck model

    Full text link
    We study the pricing problem for a European call option when the volatility of the underlying asset is random and follows the exponential Ornstein-Uhlenbeck model. The random diffusion model proposed is a two-dimensional market process that takes a log-Brownian motion to describe price dynamics and an Ornstein-Uhlenbeck subordinated process describing the randomness of the log-volatility. We derive an approximate option price that is valid when (i) the fluctuations of the volatility are larger than its normal level, (ii) the volatility presents a slow driving force toward its normal level and, finally, (iii) the market price of risk is a linear function of the log-volatility. We study the resulting European call price and its implied volatility for a range of parameters consistent with daily Dow Jones Index data.Comment: 26 pages, 6 colored figure

    Magnetic and structural properties of GeMn films: precipitation of intermetallic nanomagnets

    Get PDF
    We present a comprehensive study relating the nanostructure of Ge_0.95Mn_0.05 films to their magnetic properties. The formation of ferromagnetic nanometer sized inclusions in a defect free Ge matrix fabricated by low temperature molecular beam epitaxy is observed down to substrate temperatures T_S as low as 70 deg. Celsius. A combined transmission electron microscopy (TEM) and electron energy-loss spectroscopy (EELS) analysis of the films identifies the inclusions as precipitates of the ferromagnetic compound Mn_5Ge_3. The volume and amount of these precipitates decreases with decreasing T_S. Magnetometry of the films containing precipitates reveals distinct temperature ranges: Between the characteristic ferromagnetic transition temperature of Mn_5Ge_3 at approximately room temperature and a lower, T_S dependent blocking temperature T_B the magnetic properties are dominated by superparamagnetism of the Mn_5Ge_3 precipitates. Below T_B, the magnetic signature of ferromagnetic precipitates with blocked magnetic moments is observed. At the lowest temperatures, the films show features characteristic for a metastable state.Comment: accepted for publication in Phys. Rev. B 74 (01.12.2006). High resolution images ibide

    Novel Sorption Enhanced Reaction Process for Simultaneous Production of CO2 and H2 from Synthesis Gas Produced by Coal Gasification

    Get PDF
    The goal of this project is to evaluate the extensive feasibility of a novel concept called Thermal Swing Sorption Enhanced Reaction (TSSER) process to simultaneously produce H{sub 2} and CO{sub 2} as a single unit operation in a sorber-reactor. The successful demonstration of the potential feasibility of the TSSER concept implies that it is worth pursuing further development of the idea. This can be done by more extensive evaluation of the basic sorptive properties of the CO{sub 2} chemisorbents at realistic high pressures and by continuing the experimental and theoretical study of the TSSER process. This will allow us to substantiate the assumptions made during the preliminary design and evaluation of the process and firm up the initial conclusions. The task performed under this project consists of (i) retrofitting an existing single column sorption apparatus for measurement of high pressure CO{sub 2} sorption characteristics, (ii) measurement of high pressure CO{sub 2} chemisorption equilibria, kinetics and sorption-desorption column dynamic characteristics under the conditions of thermal swing operation of the TSSER process, (iii) experimental evaluation of the individual steps of the TSSER process (iv) development of extended mathematical model for simulating cyclic continuous operation of TSSER to aid in process scale-up and for guiding future work, (v) simulate and test SER concept using realistic syngas composition, (vi) extensive demonstration of the thermal stability of sorbents using a TGA apparatus, (vii) investigation of the surfaces of the adsorbents and adsorbed CO{sub 2} ,and (viii) test the effects of sulfur compounds found in syngas on the CO{sub 2} sorbents

    Pricing Options in Incomplete Equity Markets via the Instantaneous Sharpe Ratio

    Full text link
    We use a continuous version of the standard deviation premium principle for pricing in incomplete equity markets by assuming that the investor issuing an unhedgeable derivative security requires compensation for this risk in the form of a pre-specified instantaneous Sharpe ratio. First, we apply our method to price options on non-traded assets for which there is a traded asset that is correlated to the non-traded asset. Our main contribution to this particular problem is to show that our seller/buyer prices are the upper/lower good deal bounds of Cochrane and Sa\'{a}-Requejo (2000) and of Bj\"{o}rk and Slinko (2006) and to determine the analytical properties of these prices. Second, we apply our method to price options in the presence of stochastic volatility. Our main contribution to this problem is to show that the instantaneous Sharpe ratio, an integral ingredient in our methodology, is the negative of the market price of volatility risk, as defined in Fouque, Papanicolaou, and Sircar (2000).Comment: Keywords: Pricing derivative securities, incomplete markets, Sharpe ratio, correlated assets, stochastic volatility, non-linear partial differential equations, good deal bound

    Non-relativistic metrics from back-reacting fermions

    Full text link
    It has recently been pointed out that under certain circumstances the back-reaction of charged, massive Dirac fermions causes important modifications to AdS_2 spacetimes arising as the near horizon geometry of extremal black holes. In a WKB approximation, the modified geometry becomes a non-relativistic Lifshitz spacetime. In three dimensions, it is known that integrating out charged, massive fermions gives rise to gravitational and Maxwell Chern-Simons terms. We show that Schrodinger (warped AdS_3) spacetimes exist as solutions to a gravitational and Maxwell Chern-Simons theory with a cosmological constant. Motivated by this, we look for warped AdS_3 or Schrodinger metrics as exact solutions to a fully back-reacted theory containing Dirac fermions in three and four dimensions. We work out the dynamical exponent in terms of the fermion mass and generalize this result to arbitrary dimensions.Comment: 26 pages, v2: typos corrected, references added, minor change
    corecore