660 research outputs found

    Diversity and Security in UK Electricity Generation: The Influence of Low Carbon Objectives

    Get PDF
    We explore the relationship between low carbon objectives and the strategic security of electricity in the context of the UK Electricity System. We consider diversity of fuel source mix to represent one dimension of security - robustness against interruptions of any one source - and apply two different diversity indices to the range of electricity system scenarios produced by the UK government and independent researchers. Using data on wind generation we also consider whether a second dimension of security - the reliability of generation availability - is compromised by intermittency of renewable generation. Our results show that low carbon objectives are uniformly associated with greater long-term diversity in UK electricity. We discuss reasons for this result, explore sensitivities, and briefly discuss possible policy instruments associated with diversity and their limitations.Diversity, Security, Low Carbon, Wind Generation, Electricity

    Spatial chaos of an extensible conducting rod in a uniform magnetic field

    Full text link
    The equilibrium equations for the isotropic Kirchhoff rod are known to form an integrable system. It is also known that the effects of extensibility and shearability of the rod do not break the integrable structure. Nor, as we have shown in a previous paper does the effect of a magnetic field on a conducting rod. Here we show, by means of Mel'nikov analysis, that, remarkably, the combined effects do destroy integrability; that is, the governing equations for an extensible current-carrying rod in a uniform magnetic field are nonintegrable. This result has implications for possible configurations of electrodynamic space tethers and may be relevant for electromechanical devices

    The effects of nonlinear wave propagation on the stability of inertial cavitation

    Full text link
    In the context of forecasting temperature and pressure fields in high-intensity focussed ultrasound, the accuracy of predictive models is critical for the safety and efficacy of treatment. In such fields inertial cavitation is often observed. Classically, estimations of cavitation thresholds have been based on the assumption that the incident wave at the surface of a bubble was the same as in the far-field, neglecting the effect of nonlinear wave propagation. By modelling the incident wave as a solution to Burgers' equation using weak shock theory, the effects of nonlinear wave propagation on inertial cavitation are investigated using both numerical and analytical techniques. From radius-time curves for a single bubble, it is observed that there is a reduction in the maximum size of a bubble undergoing inertial cavitation and that the inertial collapse occurs earlier in contrast with the classical case. Corresponding stability thresholds for a bubble whose initial radius is slightly below the critical Blake radius are calculated. Bifurcation diagrams and frequency-response curves are presented associated with the loss of stability. The consequences and physical implications of the results are discussed with respect to the classical results.Comment: 13 pages, 5 figures, submitted to J. Phys. Conf. Se

    A semi-automated method for counting fluorescent malaria oocysts increases the throughput of transmission blocking studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malaria transmission is now recognized as a key target for intervention. Evaluation of the <it>Plasmodium </it>oocyst burden in the midguts of <it>Anopheles spp</it>. is important for many of assays investigating transmission. However, current assays are very time-consuming, manually demanding and patently subject to observer-observer variation.</p> <p>Methods</p> <p>This report presents the development of a method to rapidly, accurately and consistently determine oocyst burdens on mosquito midguts using GFP-expressing <it>Plasmodium berghei </it>and a custom-written macro for ImageJ. The counting macro was optimized and found to be fit-for-purpose by performing gametocyte membrane feeds with parasite infected blood. Dissected midguts were counted both manually and using the automated macro, then compared. The optimized settings for the macro were then validated by using it to determine the transmission blocking efficacies of two anti-malarial compounds - dehydroepiandrosterone sulphate and lumefantrine, in comparison to manually determined analysis of the same experiment.</p> <p>Results</p> <p>Concurrence of manual and macro counts was very high (R<sup>2 </sup>= 0.973) and reproducible. Estimated transmission blocking efficacies between manual and automated analysis were highly concordant, indicating that dehydroepiandrosterone sulphate has little or no transmission blocking potential, whilst lumefantrine strongly inhibits sporogony.</p> <p>Conclusion</p> <p>Recognizing a potential five-fold increase in throughput, the resulting reduction in personnel costs, and the absence of inter-operator/laboratory variation possible with this approach, this counting macro may be a benefit to the malaria community.</p

    Integrability of a conducting elastic rod in a magnetic field

    Full text link
    We consider the equilibrium equations for a conducting elastic rod placed in a uniform magnetic field, motivated by the problem of electrodynamic space tethers. When expressed in body coordinates the equations are found to sit in a hierarchy of non-canonical Hamiltonian systems involving an increasing number of vector fields. These systems, which include the classical Euler and Kirchhoff rods, are shown to be completely integrable in the case of a transversely isotropic rod; they are in fact generated by a Lax pair. For the magnetic rod this gives a physical interpretation to a previously proposed abstract nine-dimensional integrable system. We use the conserved quantities to reduce the equations to a four-dimensional canonical Hamiltonian system, allowing the geometry of the phase space to be investigated through Poincar\'e sections. In the special case where the force in the rod is aligned with the magnetic field the system turns out to be superintegrable, meaning that the phase space breaks down completely into periodic orbits, corresponding to straight twisted rods.Comment: 19 pages, 1 figur

    DNA cruciform arms nucleate through a correlated but non-synchronous cooperative mechanism

    Full text link
    Inverted repeat (IR) sequences in DNA can form non-canonical cruciform structures to relieve torsional stress. We use Monte Carlo simulations of a recently developed coarse-grained model of DNA to demonstrate that the nucleation of a cruciform can proceed through a cooperative mechanism. Firstly, a twist-induced denaturation bubble must diffuse so that its midpoint is near the centre of symmetry of the IR sequence. Secondly, bubble fluctuations must be large enough to allow one of the arms to form a small number of hairpin bonds. Once the first arm is partially formed, the second arm can rapidly grow to a similar size. Because bubbles can twist back on themselves, they need considerably fewer bases to resolve torsional stress than the final cruciform state does. The initially stabilised cruciform therefore continues to grow, which typically proceeds synchronously, reminiscent of the S-type mechanism of cruciform formation. By using umbrella sampling techniques we calculate, for different temperatures and superhelical densities, the free energy as a function of the number of bonds in each cruciform along the correlated but non-synchronous nucleation pathways we observed in direct simulations.Comment: 12 pages main paper + 11 pages supplementary dat

    Attempted isolation of the gene encoding the 21 Kd Plasmodium berghei ookinete transmission blocking antigen from Plasmodium yoelli and Plasmodium vivax

    Full text link
    The 21kD ookinete antigen of Plasmodium berghei (Pbs 21) has been shown to elicit an effective and long lasting transmission blocking immune response in mice. Having cloned and sequenced this antigen (Paton et al. 1993) the sequence was compared to the genes of the same family previously identified in P. falciparum, P. gallinaceum (Kaslow et al. 1989) and P. reichenowi (Lal et al. 1990). Four conserved areas were identified in this comparison, to which degenerate oligonucleotides were designed. PCR amplification and screening of genomic libraries was then carried out using these oligonucleotides. The P. yoelii gene was successfully cloned and a number of novel P. vivax genes identified but the P. vivax homologue of Pbs21 remains elusive

    Efficacy and Safety of Human Retinal Progenitor Cells.

    Get PDF
    PURPOSE: We assessed the long-term efficacy and safety of human retinal progenitor cells (hRPC) using established rodent models. METHODS: Efficacy of hRPC was tested initially in Royal College of Surgeons (RCS) dystrophic rats immunosuppressed with cyclosporine/dexamethasone. Due to adverse effects of dexamethasone, this drug was omitted from a subsequent dose-ranging study, where different hRPC doses were tested for their ability to preserve visual function (measured by optokinetic head tracking) and retinal structure in RCS rats at 3 to 6 months after grafting. Safety of hRPC was assessed by subretinal transplantation into wild type (WT) rats and NIH-III nude mice, with analysis at 3 to 6 and 9 months after grafting, respectively. RESULTS: The optimal dose of hRPC for preserving visual function/retinal structure in dystrophic rats was 50,000 to 100,000 cells. Human retinal progenitor cells integrated/survived in dystrophic and WT rat retina up to 6 months after grafting and expressed nestin, vimentin, GFAP, and βIII tubulin. Vision and retinal structure remained normal in WT rats injected with hRPC and there was no evidence of tumors. A comparison between dexamethasone-treated and untreated dystrophic rats at 3 months after grafting revealed an unexpected reduction in the baseline visual acuity of dexamethasone-treated animals. CONCLUSIONS: Human retinal progenitor cells appear safe and efficacious in the preclinical models used here. TRANSLATIONAL RELEVANCE: Human retinal progenitor cells could be deployed during early stages of retinal degeneration or in regions of intact retina, without adverse effects on visual function. The ability of dexamethasone to reduce baseline visual acuity in RCS dystrophic rats has important implications for the interpretation of preclinical and clinical cell transplant studies

    A Quantitative, Non-Destructive Methodology for Habitat Characterisation and Benthic Monitoring at Offshore Renewable Energy Developments

    Get PDF
    Following governments' policies to tackle global climate change, the development of offshore renewable energy sites is likely to increase substantially over coming years. All such developments interact with the seabed to some degree and so a key need exists for suitable methodology to monitor the impacts of large-scale Marine Renewable Energy Installations (MREIs). Many of these will be situated on mixed or rocky substrata, where conventional methods to characterise the habitat are unsuitable. Traditional destructive sampling is also inappropriate in conservation terms, particularly as safety zones around (MREIs) could function as Marine Protected Areas, with positive benefits for biodiversity. Here we describe a technique developed to effectively monitor the impact of MREIs and report the results of its field testing, enabling large areas to be surveyed accurately and cost-effectively. The methodology is based on a high-definition video camera, plus LED lights and laser scale markers, mounted on a “flying array” that maintains itself above the seabed grounded by a length of chain, thus causing minimal damage. Samples are taken by slow-speed tows of the gear behind a boat (200 m transects). The HD video and randomly selected frame grabs are analysed to quantify species distribution. The equipment was tested over two years in Lyme Bay, UK (25 m depth), then subsequently successfully deployed in demanding conditions at the deep (>50 m) high-energy Wave Hub site off Cornwall, UK, and a potential tidal stream energy site in Guernsey, Channel Islands (1.5 ms−1 current), the first time remote samples from such a habitat have been achieved. The next stage in the monitoring development process is described, involving the use of Remote Operated Vehicles to survey the seabed post-deployment of MREI devices. The complete methodology provides the first quantitative, relatively non-destructive method for monitoring mixed-substrate benthic communities beneath MPAs and MREIs pre- and post-device deployment
    corecore