2,735 research outputs found
Zero-bias Anomaly of Tunneling into the Edge of a 2D Electron System
We investigate the electron tunneling into the edge of a clean weakly
interacting two-dimensional electron gas. It is shown that the corresponding
differential conductance has a cusp at zero bias, and is characterized
by a universal slope at . This singularity originates from the
electron scattering on the Friedel oscillation caused by the boundary of the
system.Comment: 10 pages, uuencoded compressed Postscript file, to appear in Phys.
Rev. B (Rapid Communications
An Electron Spin Resonance Selection Rule for Spin-Gapped Systems
The direct electron spin resonance (ESR) absorption between a singlet ground
state and the triplet excited states of spin gap systems is investigated. Such
an absorption, which is forbidden by the conservation of the total spin quantum
number in isotropic Hamiltonians, is allowed by the Dzyaloshinskii-Moriya
interaction. We show a selection rule in the presence of this interaction,
using the exact numerical diagonalization of the finite cluster of the
quasi-one-dimensional bond-alternating spin system. The selection rule is also
modified into a suitable form in order to interpret recent experimental results
on CuGeO and NaVO.Comment: 5 pages, Revtex, with 6 eps figures, to appear in J. Phys. Soc. Jpn.
Vol. 69 No. 11 (2000
Weak ferromagnetism and field-induced spin reorientation in K2V3O8
Magnetization and neutron diffraction measurements indicate long-range
antiferromagnetic ordering below TN=4 K in the 2D, S=1/2 Heisenberg
antiferromagnet K2V3O8. The ordered state exhibits ``weak ferromagnetism'' and
novel, field-induced spin reorientations. These experimental observations are
well described by a classical, two-spin Heisenberg model incorporating
Dzyaloshinskii-Moriya interactions and an additional c-axis anisotropy. This
additional anisotropy can be accounted for by inclusion of the symmetric
anisotropy term recently described by Kaplan, Shekhtman, Entin-Wohlman, and
Aharony. This suggests that K2V3O8 may be a very unique system where the
qualitative behavior relies on the presence of this symmetric anisotropy.Comment: 5 pages, 4 ps figures, REVTEX, submitted to PR
Order from disorder: Quantum spin gap in magnon spectra of LaTiO_3
A theory of the anisotropic superexchange and low energy spin excitations in
a Mott insulator with t_{2g} orbital degeneracy is presented. We observe that
the spin-orbit coupling induces frustrating Ising-like anisotropy terms in the
spin Hamiltonian, which invalidate noninteracting spin wave theory. The
frustration of classical states is resolved by an order from disorder
mechanism, which selects a particular direction of the staggered moment and
generates a quantum spin gap. The theory explains well the observed magnon gaps
in LaTiO_3. As a test case, a specific prediction is made on the splitting of
magnon branches at certain momentum directions.Comment: 5 pages, 2 figures, final versio
Dzyaloshinsky-Moriya antisymmetric exchange coupling in cuprates: Oxygen effects
We revisit a problem of Dzyaloshinsky-Moriya antisymmetric exchange coupling
for a single bond in cuprates specifying the local spin-orbital contributions
to Dzyaloshinsky vector focusing on the oxygen term. The Dzyaloshinsky vector
and respective weak ferromagnetic moment is shown to be a superposition of
comparable and, sometimes, competing local Cu and O contributions. The
intermediate oxygen O Knight shift is shown to be an effective tool to
inspect the effects of Dzyaloshinsky-Moriya coupling in an external magnetic
field. We predict the effect of oxygen weak antiferromagnetism in
edge-shared CuO chains due to uncompensated oxygen Dzyaloshinsky vectors.
Finally, we revisit the effects of symmetric spin anisotropy, in particular,
those directly induced by Dzyaloshinsky-Moriya coupling.Comment: 12 pages, 2 figures, submitted to JET
Optimization of design and beam test of microstrip gas chambers
We describe recent experimental and theoretical work aimed at optimizing the geometry and the operation of micro-strip gas chambers in order to improve their performance and reliability. With the help of a simulation program, we have studied the mechanism of signal propagation and analyzed the effects on signal shape and size of resistivity of strips, grouping of biased strips and presence of a back-plane. Several detectors manufactured according to the results of the study and equipped with fast amplifiers have been installed in a test beam to study general operating characteristics, efficiency and localization accuracy; preliminary results of the data analysis are discussed
Magnetic anisotropy and low-energy spin waves in the Dzyaloshinskii-Moriya spiral magnet Ba_2 Cu Ge_2 O_7
New neutron diffraction and inelastic scattering experiments are used to
investigate in detail the field dependence of the magnetic structure and
low-energy spin wave spectrum of the Dzyaloshinskii-Moriya helimagnet Ba_2 Cu
Ge_2 O_7. The results suggest that the previously proposed model for the
magnetism of this compound (an ideal sinusoidal spin spiral, stabilized by
isotropic exchange and Dzyaloshinskii-Moriya interactions) needs to be refined.
Both new and previously published data can be quantitatively explained by
taking into account the Kaplan-Shekhtman-Entin-Wohlman-Aharony (KSEA) term, a
special magnetic anisotropy term that was predicted to always accompany
Dzyaloshinskii-Moriya interactions in insulators.Comment: 30 pages, 10 figures, submitted to PR
- …