3,145 research outputs found

    O⋆O^\star-algebras and quantum dynamics: some existence results

    Full text link
    We discuss the possibility of defining an algebraic dynamics within the settings of O⋆O^\star-algebras. Compared with our previous results on this subject, the main improvement here is that we are not assuming the existence of some hamiltonian for the {\em full} physical system. We will show that, under suitable conditions, the dynamics can still be defined via some limiting procedure starting from a given {\em regularized sequence}

    Note on the Relativistic Thermodynamics of Moving Bodies

    Full text link
    We employ a novel thermodynamical argument to show that, at the macroscopic level,there is no intrinsic law of temperature transformation under Lorentz boosts. This result extends the corresponding microstatistical one of earlier works to the purely macroscopic regime and signifies that the concept of temperature as an objective entity is restricted to the description of bodies in their rest frames. The argument on which this result is based is centred on the thermal transactions between a body that moves with uniform velocity relative to a certain inertial frame and a thermometer, designed to measure its temperature, that is held at rest in that frame.Comment: To be published in J. Phys. A. A few minor corrections have been made to the earlier version of this articl

    Variational approach to transport in quantum dots

    Full text link
    We have derived a variational principle that defines the nonequilibrium steady-state transport across a correlated impurity mimicking, e.g., a quantum dot coupled to biased leads. This variational principle has been specialized to a Gutzwiller's variational space, and applied to the study of the simple single-orbital Anderson impurity model at half filling, finding a good qualitative accord with the observed behavior in quantum dots for the expected regime of values of the bias. Beyond the purely theoretical interest in the formal definition of a variational principle in a nonequilibrium problem, the particular methods proposed have the important advantage to be simple and flexible enough to deal with more complicated systems and variational spaces.Comment: 15 pages, 4 figure

    Manufacturing time operators: covariance, selection criteria, and examples

    Full text link
    We provide the most general forms of covariant and normalized time operators and their probability densities, with applications to quantum clocks, the time of arrival, and Lyapunov quantum operators. Examples are discussed of the profusion of possible operators and their physical meaning. Criteria to define unique, optimal operators for specific cases are given

    Quantum control of spin-correlations in ultracold lattice gases

    Full text link
    We demonstrate that it is possible to prepare a lattice gas of ultracold atoms with a desired non-classical spin-correlation function using atom-light interaction of the kind routinely employed in quantum spin polarization spectroscopy. Our method is based on quantum non-demolition (QND) measurement and feedback, and allows in particular to create on demand exponentially or algebraically decaying correlations, as well as a certain degree of multi-partite entanglement.Comment: 2 figure

    KMS, etc

    Full text link
    A general form of the ``Wick rotation'', starting from imaginary-time Green functions of quantum-mechanical systems in thermal equilibrium at positive temperature, is established. Extending work of H. Araki, the role of the KMS condition and of an associated anti-unitary symmetry operation, the ``modular conjugation'', in constructing analytic continuations of Green functions from real- to imaginary times, and back, is clarified. The relationship between the KMS condition for the vacuum with respect to Lorentz boosts, on one hand, and the spin-statistics connection and the PCT theorem, on the other hand, in local, relativistic quantum field theory is recalled. General results on the reconstruction of local quantum theories in various non-trivial gravitational backgrounds from ``Euclidian amplitudes'' are presented. In particular, a general form of the KMS condition is proposed and applied, e.g., to the Unruh- and the Hawking effects. This paper is dedicated to Huzihiro Araki on the occasion of his seventieth birthday, with admiration, affection and best wishes.Comment: 56 pages, submitted to J. Math. Phy

    Quantum macrostatistical picture of nonequilibrium steady states

    Full text link
    We employ a quantum macrostatistical treatment of irreversible processes to prove that, in nonequilibrium steady states, (a) the hydrodynamical observables execute a generalised Onsager-Machlup process and (b) the spatial correlations of these observables are generically of long range. The key assumptions behind these results are a nonequilibrium version of Onsager's regression hypothesis, together with certain hypotheses of chaoticity and local equilibrium for hydrodynamical fluctuations.Comment: TeX, 13 page
    • …
    corecore