21 research outputs found
Matrix-free calcium in isolated chromaffin vesicles
Isolated secretory vesicles from bovine adrenal medulla contain 80 nmol of Ca2+ and 25 nmol
of Mg2+ per milligram of protein. As determined with a Ca2+-selective electrode, a further accumulation
of about 160 nmol of Ca2+/mg of protein can be attained upon addition of the Ca2+ ionophore A23187.
During this process protons are released from the vesicles, in exchange for Ca2+ ions, as indicated by the
decrease of the pH in the incubation medium or the release of 9-aminoacridine previously taken up by the
vesicles. Intravesicular Mg2+ is not released from the vesicles by A23 187, as determined by atomic emission
spectroscopy. In the presence of N H Q , which causes the collapse of the secretory vesicle transmembrane
proton gradient (ApH), Ca2+ uptake decreases. Under these conditions A23 187-mediated influx of Ca2+
and efflux of H+ cease at Ca2+ concentrations of about 4 pM. Below this concentration Ca2+ is even released
from the vesicles. At the Ca2+ concentration at which no net flux of ions occurs the intravesicular matrix
free Ca2+ equals the extravesicular free Ca2+. In the absence of NH4C1 we determined an intravesicular
pH of 6.2. Under these conditions the Ca2+ influx ceases around 0.15 pM. From this value and the known
pH across the vesicular membrane an intravesicular matrix free Ca2+ concentration of about 24 pM was
calculated. This is within the same order of magnitude as the concentration of free Ca2+ in the vesicles
determined in the presence of NH4C1. Calculation of the total Ca2+ present in the secretory vesicles gives
an apparent intravesicular Ca2+ concentration of 40 mM, which is a factor of lo4 higher than the free
intravesicular concentration of Ca2+. It can be concluded, therefore, that the concentration gradient of free
Ca2+ across the secretory vesicle membrane in the intact chromaffin cells is probably small, which implies
that less energy is required to accumulate and maintain Ca2+ within the vesicles than was previously
anticipated