1,156 research outputs found

    Temperature chaos in 3D Ising Spin Glasses is driven by rare events

    Get PDF
    Temperature chaos has often been reported in literature as a rare-event driven phenomenon. However, this fact has always been ignored in the data analysis, thus erasing the signal of the chaotic behavior (still rare in the sizes achieved) and leading to an overall picture of a weak and gradual phenomenon. On the contrary, our analysis relies on a large-deviations functional that allows to discuss the size dependencies. In addition, we had at our disposal unprecedentedly large configurations equilibrated at low temperatures, thanks to the Janus computer. According to our results, when temperature chaos occurs its effects are strong and can be felt even at short distances.Comment: 5 pages, 5 figure

    When is the Haar measure a Pietsch measure for nonlinear mappings?

    Full text link
    We show that, as in the linear case, the normalized Haar measure on a compact topological group GG is a Pietsch measure for nonlinear summing mappings on closed translation invariant subspaces of C(G)C(G). This answers a question posed to the authors by J. Diestel. We also show that our result applies to several well-studied classes of nonlinear summing mappings. In the final section some problems are proposed

    A geometric technique to generate lower estimates for the constants in the Bohnenblust--Hille inequalities

    Full text link
    The Bohnenblust--Hille (polynomial and multilinear) inequalities were proved in 1931 in order to solve Bohr's absolute convergence problem on Dirichlet series. Since then these inequalities have found applications in various fields of analysis and analytic number theory. The control of the constants involved is crucial for applications, as it became evident in a recent outstanding paper of Defant, Frerick, Ortega-Cerd\'{a}, Ouna\"{\i}es and Seip published in 2011. The present work is devoted to obtain lower estimates for the constants appearing in the Bohnenblust--Hille polynomial inequality and some of its variants. The technique that we introduce for this task is a combination of the Krein--Milman Theorem with a description of the geometry of the unit ball of polynomial spaces on ℓ∞2\ell^2_\infty.Comment: This preprint does no longer exist as a single manuscript. It is now part of the preprint entitled "The optimal asymptotic hypercontractivity constant of the real polynomial Bohnenblust-Hille inequality is 2" (arXiv reference 1209.4632
    • 

    corecore