3,812 research outputs found

    Loss of Function and Inhibitory Effects of Human CSX/NKX2.5 Homeoprotein Mutations Associated with Congenital Heart Disease

    Get PDF
    CSX/NKX2.5 is an evolutionarily conserved homeodomain-containing (HD-containing) transcription factor that is essential for early cardiac development. Recently, ten different heterozygous CSX/NKX2.5 mutations were found in patients with congenital heart defects that are transmitted in an autosomal dominant fashion. To determine the consequence of these mutations, we analyzed nuclear localization, DNA binding, transcriptional activation, and dimerization of mutant CSX/NKX2.5 proteins. All mutant proteins were translated and located to the nucleus, except one splice-donor site mutant whose protein did not accumulate in the cell. All mutants that had truncation or missense mutations in the HD had severely reduced DNA binding activity and little or no transcriptional activation function. In contrast, mutants with intact HDs exhibit normal DNA binding to the monomeric binding site but had three- to ninefold reduction in DNA binding to the dimeric binding sites. HD missense mutations that preserved homodimerization ability inhibited the activation of atrial natriuretic factor by wild-type CSX/NKX2.5. Although our studies do not characterize the genotype-phenotype relationship of the ten human mutations, they identify specific abnormalities of CSX/NKX2.5 function essential for transactivation of target genes

    Graph-based Features for Automatic Online Abuse Detection

    Full text link
    While online communities have become increasingly important over the years, the moderation of user-generated content is still performed mostly manually. Automating this task is an important step in reducing the financial cost associated with moderation, but the majority of automated approaches strictly based on message content are highly vulnerable to intentional obfuscation. In this paper, we discuss methods for extracting conversational networks based on raw multi-participant chat logs, and we study the contribution of graph features to a classification system that aims to determine if a given message is abusive. The conversational graph-based system yields unexpectedly high performance , with results comparable to those previously obtained with a content-based approach

    Tbx5 is Required for Avian and Mammalian Epicardial Formation and Coronary Vasculogenesis.

    Get PDF
    Rationale: Holt-Oram syndrome (HOS) is an autosomal dominant heart-hand syndrome caused by mutations in the TBX5 gene. Overexpression of Tbx5 in the chick proepicardial organ (PEO) impaired coronary blood vessel formation. However, the potential activity of Tbx5 in the epicardium itself, and Tbx5\u27s role in mammalian coronary vasculogenesis, remains largely unknown. Objective: To evaluate the consequences of altered Tbx5 gene dosage during PEO and epicardial development in the embryonic chick and mouse. Methods and Results: Retroviral-mediated knockdown or upregulation of Tbx5 expression in the embryonic chick PEO as well as proepicardial-specific deletion of Tbx5 in the embryonic mouse (Tbx5(epi-/-)) impaired normal PEO cell development, inhibited epicardial and coronary blood vessel formation and altered developmental gene expression. The generation of epicardial-derived cells (EPDCs) and their migration into the myocardium was impaired between embryonic day (E) 13.5-15.5 in mutant hearts due to delayed epicardial attachment to the myocardium and subepicardial accumulation of EPDCs. This caused defective coronary vasculogenesis associated with impaired vascular smooth muscle cell recruitment, and reduced invasion of cardiac fibroblasts and endothelial cells into myocardium. In contrast to wildtype hearts that exhibited an elaborate ventricular vascular network, Tbx5(epi-/-) hearts displayed a marked decrease in vascular density that was associated with myocardial hypoxia as exemplified by HIF1α upregulation and increased binding of Hypoxyprobe-1. Tbx5(epi-/-) mice with such myocardial hypoxia exhibited reduced exercise capacity compared to wildtype mice. Conclusions: Our findings support a conserved Tbx5 dose-dependent requirement for both proepicardial and epicardial progenitor cell development in chick and mouse coronary vascular formation

    Global Saturation of Regularization Methods for Inverse Ill-Posed Problems

    Full text link
    In this article the concept of saturation of an arbitrary regularization method is formalized based upon the original idea of saturation for spectral regularization methods introduced by A. Neubauer in 1994. Necessary and sufficient conditions for a regularization method to have global saturation are provided. It is shown that for a method to have global saturation the total error must be optimal in two senses, namely as optimal order of convergence over a certain set which at the same time, must be optimal (in a very precise sense) with respect to the error. Finally, two converse results are proved and the theory is applied to find sufficient conditions which ensure the existence of global saturation for spectral methods with classical qualification of finite positive order and for methods with maximal qualification. Finally, several examples of regularization methods possessing global saturation are shown.Comment: 29 page

    The Swiss Board Directors Network in 2009

    Get PDF
    We study the networks formed by the directors of the most important Swiss boards and the boards themselves for the year 2009. The networks are obtained by projection from the original bipartite graph. We highlight a number of important statistical features of those networks such as degree distribution, weight distribution, and several centrality measures as well as their interrelationships. While similar statistics were already known for other board systems, and are comparable here, we have extended the study with a careful investigation of director and board centrality, a k-core analysis, and a simulation of the speed of information propagation and its relationships with the topological aspects of the network such as clustering and link weight and betweenness. The overall picture that emerges is one in which the topological structure of the Swiss board and director networks has evolved in such a way that special actors and links between actors play a fundamental role in the flow of information among distant parts of the network. This is shown in particular by the centrality measures and by the simulation of a simple epidemic process on the directors network.Comment: Submitted to The European Physical Journal

    Prediction of sarcomere mutations in subclinical hypertrophic cardiomyopathy.

    Get PDF
    BACKGROUND: Sarcomere protein mutations in hypertrophic cardiomyopathy induce subtle cardiac structural changes before the development of left ventricular hypertrophy (LVH). We have proposed that myocardial crypts are part of this phenotype and independently associated with the presence of sarcomere gene mutations. We tested this hypothesis in genetic hypertrophic cardiomyopathy pre-LVH (genotype positive, LVH negative [G+LVH-]). METHODS AND RESULTS: A multicenter case-control study investigated crypts and 22 other cardiovascular magnetic resonance parameters in subclinical hypertrophic cardiomyopathy to determine their strength of association with sarcomere gene mutation carriage. The G+LVH- sample (n=73) was 29 ± 13 years old and 51% were men. Crypts were related to the presence of sarcomere mutations (for ≥1 crypt, β=2.5; 95% confidence interval [CI], 0.5-4.4; P=0.014 and for ≥2 crypts, β=3.0; 95% CI, 0.8-7.9; P=0.004). In combination with 3 other parameters: anterior mitral valve leaflet elongation (β=2.1; 95% CI, 1.7-3.1; P<0.001), abnormal LV apical trabeculae (β=1.6; 95% CI, 0.8-2.5; P<0.001), and smaller LV end-systolic volumes (β=1.4; 95% CI, 0.5-2.3; P=0.001), multiple crypts indicated the presence of sarcomere gene mutations with 80% accuracy and an area under the curve of 0.85 (95% CI, 0.8-0.9). In this G+LVH- population, cardiac myosin-binding protein C mutation carriers had twice the prevalence of crypts when compared with the other combined mutations (47 versus 23%; odds ratio, 2.9; 95% CI, 1.1-7.9; P=0.045). CONCLUSIONS: The subclinical hypertrophic cardiomyopathy phenotype measured by cardiovascular magnetic resonance in a multicenter environment and consisting of crypts (particularly multiple), anterior mitral valve leaflet elongation, abnormal trabeculae, and smaller LV systolic cavity is indicative of the presence of sarcomere gene mutations and highlights the need for further study

    Mechanism based therapies enable personalised treatment of hypertrophic cardiomyopathy

    Get PDF
    Cardiomyopathies have unresolved genotype–phenotype relationships and lack disease-specific treatments. Here we provide a framework to identify genotype-specific pathomechanisms and therapeutic targets to accelerate the development of precision medicine. We use human cardiac electromechanical in-silico modelling and simulation which we validate with experimental hiPSC-CM data and modelling in combination with clinical biomarkers. We select hypertrophic cardiomyopathy as a challenge for this approach and study genetic variations that mutate proteins of the thick (MYH7R403Q/+) and thin filaments (TNNT2R92Q/+, TNNI3R21C/+) of the cardiac sarcomere. Using in-silico techniques we show that the destabilisation of myosin super relaxation observed in hiPSC-CMs drives disease in virtual cells and ventricles carrying the MYH7R403Q/+ variant, and that secondary effects on thin filament activation are necessary to precipitate slowed relaxation of the cell and diastolic insufficiency in the chamber. In-silico modelling shows that Mavacamten corrects the MYH7R403Q/+ phenotype in agreement with hiPSC-CM experiments. Our in-silico model predicts that the thin filament variants TNNT2R92Q/+ and TNNI3R21C/+ display altered calcium regulation as central pathomechanism, for which Mavacamten provides incomplete salvage, which we have corroborated in TNNT2R92Q/+ and TNNI3R21C/+ hiPSC-CMs. We define the ideal characteristics of a novel thin filament-targeting compound and show its efficacy in-silico. We demonstrate that hybrid human-based hiPSC-CM and in-silico studies accelerate pathomechanism discovery and classification testing, improving clinical interpretation of genetic variants, and directing rational therapeutic targeting and design
    corecore