3,071 research outputs found
Quantum local-field corrections and spontaneous decay
A recently developed scheme [S. Scheel, L. Knoll, and D.-G. Welsch, Phys.
Rev. A 58, 700 (1998)] for quantizing the macroscopic electromagnetic field in
linear dispersive and absorbing dielectrics satisfying the Kramers-Kronig
relations is used to derive the quantum local-field correction for the standard
virtual-sphere-cavity model. The electric and magnetic local-field operators
are shown to be consistent with QED only if the polarization noise is fully
taken into account. It is shown that the polarization fluctuations in the local
field can dramatically change the spontaneous decay rate, compared with the
familiar result obtained from the classical local-field correction. In
particular, the spontaneous emission rate strongly depends on the radius of the
local-field virtual cavity.Comment: 7 pages, using RevTeX, 4 figure
Entanglement degradation of a two-mode squeezed vacuum in absorbing and amplifying optical fibers
Applying the recently developed formalism of quantum-state transformation at
absorbing dielectric four-port devices [L.~Kn\"oll, S.~Scheel, E.~Schmidt,
D.-G.~Welsch, and A.V.~Chizhov, Phys. Rev. A {\bf 59}, 4716 (1999)], we
calculate the quantum state of the outgoing modes of a two-mode squeezed vacuum
transmitted through optical fibers of given extinction coefficients. Using the
Peres--Horodecki separability criterion for continuous variable systems
[R.~Simon, Phys. Rev. Lett. {\bf 84}, 2726 (2000)], we compute the maximal
length of transmission of a two-mode squeezed vacuum through an absorbing
system for which the transmitted state is still inseparable. Further, we
calculate the maximal gain for which inseparability can be observed in an
amplifying setup. Finally, we estimate an upper bound of the entanglement
preserved after transmission through an absorbing system. The results show that
the characteristic length of entanglement degradation drastically decreases
with increasing strength of squeezing.Comment: Paper presented at the International Conference on Quantum Optics and
VIII Seminar on Quantum Optics, Raubichi, Belarus, May 28-31, 2000, 11 pages,
LaTeX2e, 4 eps figure
Effect of the Centrifugal Force on Domain Chaos in Rayleigh-B\'enard convection
Experiments and simulations from a variety of sample sizes indicated that the
centrifugal force significantly affects rotating Rayleigh-B\'enard
convection-patterns. In a large-aspect-ratio sample, we observed a hybrid state
consisting of domain chaos close to the sample center, surrounded by an annulus
of nearly-stationary nearly-radial rolls populated by occasional defects
reminiscent of undulation chaos. Although the Coriolis force is responsible for
domain chaos, by comparing experiment and simulation we show that the
centrifugal force is responsible for the radial rolls. Furthermore, simulations
of the Boussinesq equations for smaller aspect ratios neglecting the
centrifugal force yielded a domain precession-frequency
with as predicted by the amplitude-equation model for domain
chaos, but contradicted by previous experiment. Additionally the simulations
gave a domain size that was larger than in the experiment. When the centrifugal
force was included in the simulation, and the domain size closely agreed
with experiment.Comment: 8 pages, 11 figure
On the equivalence of the Langevin and auxiliary field quantization methods for absorbing dielectrics
Recently two methods have been developed for the quantization of the
electromagnetic field in general dispersing and absorbing linear dielectrics.
The first is based upon the introduction of a quantum Langevin current in
Maxwell's equations [T. Gruner and D.-G. Welsch, Phys. Rev. A 53, 1818 (1996);
Ho Trung Dung, L. Kn\"{o}ll, and D.-G. Welsch, Phys. Rev. A 57, 3931 (1998); S.
Scheel, L. Kn\"{o}ll, and D.-G. Welsch, Phys. Rev. A 58, 700 (1998)], whereas
the second makes use of a set of auxiliary fields, followed by a canonical
quantization procedure [A. Tip, Phys. Rev. A 57, 4818 (1998)]. We show that
both approaches are equivalent.Comment: 7 pages, RevTeX, no figure
Nonequilibrium thermal Casimir-Polder forces
We study the nonequilibrium Casimir-Polder force on an atom prepared in an
incoherent superposition of internal energy-eigenstates, which is placed in a
magnetoelectric environment of nonuniform temperature. After solving the
coupled atom--field dynamics within the framework of macroscopic quantum
electrodynamics, we derive a general expression for the thermal Casimir-Polder
force.Comment: 5 page
- …
