38 research outputs found

    Efficacy of standard and low dose hydrochlorothiazide in the recurrence prevention of calcium nephrolithiasis (NOSTONE trial): protocol for a randomized double-blind placebo-controlled trial.

    Get PDF
    Nephrolithiasis is a global healthcare problem with a current lifetime risk of 18.8% in men and 9.4% in women. Given the high cost of medical treatments and surgical interventions as well as the morbidity related to symptomatic stone disease, medical prophylaxis for stone recurrence is an attractive approach. Thiazide diuretics have been the cornerstone of pharmacologic metaphylaxis for more than 40 years. However, evidence for benefits and harms of thiazides in the prevention of calcium containing kidney stones in general remains unclear. In addition, the efficacy of the currently employed low dose thiazide regimens to prevent stone recurrence is not known. The NOSTONE trial is an investigator-initiated 3-year prospective, multicenter, double-blind, placebo-controlled trial to assess the efficacy of standard and low dose hydrochlorothiazide treatment in the recurrence prevention of calcium containing kidney stones. We plan to include 416 adult (≥ 18 years) patients with recurrent (≥ 2 stone episodes in the last 10 years) calcium containing kidney stones (containing ≥50% of calcium oxalate, calcium phosphate or a mixture of both). Patients will be randomly allocated to 50 mg or 25 mg or 12.5 mg hydrochlorothiazide or placebo. The primary outcome will be incidence of stone recurrence (a composite of symptomatic or radiologic recurrence). Secondary outcomes will be individual components of the composite primary outcome, safety and tolerability of hydrochlorothiazide treatment, changes in urinary biochemistry elicited by hydrochlorothiazide treatment and impact of baseline disease severity, biochemical abnormalities and stone composition on treatment response. The NOSTONE study will provide long-sought information on the efficacy of hydrochlorothiazide in the recurrence prevention of calcium containing kidney stones. Strengths of the study include the randomized, double-blind and placebo-controlled design, the large amount of patients studied, the employment of high sensitivity and high specificity imaging and the exclusive public funding support. ClinicalTrials.gov, NCT03057431 . Registered on February 20 2017

    Systematic Review of Potential Health Risks Posed by Pharmaceutical, Occupational and Consumer Exposures to Metallic and Nanoscale Aluminum, Aluminum Oxides, Aluminum Hydroxide and Its Soluble Salts

    Get PDF
    Aluminum (Al) is a ubiquitous substance encountered both naturally (as the third most abundant element) and intentionally (used in water, foods, pharmaceuticals, and vaccines); it is also present in ambient and occupational airborne particulates. Existing data underscore the importance of Al physical and chemical forms in relation to its uptake, accumulation, and systemic bioavailability. The present review represents a systematic examination of the peer-reviewed literature on the adverse health effects of Al materials published since a previous critical evaluation compiled by Krewski et al. (2007). Challenges encountered in carrying out the present review reflected the experimental use of different physical and chemical Al forms, different routes of administration, and different target organs in relation to the magnitude, frequency, and duration of exposure. Wide variations in diet can result in Al intakes that are often higher than the World Health Organization provisional tolerable weekly intake (PTWI), which is based on studies with Al citrate. Comparing daily dietary Al exposures on the basis of “total Al”assumes that gastrointestinal bioavailability for all dietary Al forms is equivalent to that for Al citrate, an approach that requires validation. Current occupational exposure limits (OELs) for identical Al substances vary as much as 15-fold. The toxicity of different Al forms depends in large measure on their physical behavior and relative solubility in water. The toxicity of soluble Al forms depends upon the delivered dose of Al+ 3 to target tissues. Trivalent Al reacts with water to produce bidentate superoxide coordination spheres [Al(O2)(H2O4)+ 2 and Al(H2O)6 + 3] that after complexation with O2•−, generate Al superoxides [Al(O2•)](H2O5)]+ 2. Semireduced AlO2• radicals deplete mitochondrial Fe and promote generation of H2O2, O2 • − and OH•. Thus, it is the Al+ 3-induced formation of oxygen radicals that accounts for the oxidative damage that leads to intrinsic apoptosis. In contrast, the toxicity of the insoluble Al oxides depends primarily on their behavior as particulates. Aluminum has been held responsible for human morbidity and mortality, but there is no consistent and convincing evidence to associate the Al found in food and drinking water at the doses and chemical forms presently consumed by people living in North America and Western Europe with increased risk for Alzheimer\u27s disease (AD). Neither is there clear evidence to show use of Al-containing underarm antiperspirants or cosmetics increases the risk of AD or breast cancer. Metallic Al, its oxides, and common Al salts have not been shown to be either genotoxic or carcinogenic. Aluminum exposures during neonatal and pediatric parenteral nutrition (PN) can impair bone mineralization and delay neurological development. Adverse effects to vaccines with Al adjuvants have occurred; however, recent controlled trials found that the immunologic response to certain vaccines with Al adjuvants was no greater, and in some cases less than, that after identical vaccination without Al adjuvants. The scientific literature on the adverse health effects of Al is extensive. Health risk assessments for Al must take into account individual co-factors (e.g., age, renal function, diet, gastric pH). Conclusions from the current review point to the need for refinement of the PTWI, reduction of Al contamination in PN solutions, justification for routine addition of Al to vaccines, and harmonization of OELs for Al substances

    Mitteilungen - Communications

    No full text

    Die Bindung von Prontosil an die Bluteiweisskörper

    No full text

    A critical assessment of Fliess' theory of biorhythms

    No full text

    Pseudomonas protegens CHA0 does not increase phosphorus uptake from 33P labeled synthetic hydroxyapatite by wheat grown on calcareous soil

    No full text
    Soil microorganisms exuding organic acids have the potential to solubilize inorganic phosphorus (P), which could improve the P availability to plants growing on calcareous soil. The gluconic acid exuding bacteria Pseudomonas protegens CHA0 can solubilize P under glucose rich in vitro conditions, but evidence on the effectiveness in soil is lacking. This discrepancy in P solubilization between in vitro and in vivo is common for many P solubilizing bacteria. Possible causes for this discrepancy are rarely explored in soil using mechanism oriented approaches. Proposed reasons for limitation of bacterial P solubilization in soil are low persistence of the inoculant or low glucose availability in the plant rhizosphere. To test these two hypotheses we investigated the solubilization of 33P labeled synthetic hydroxyapatite (Ca33P) by the gluconic acid producing P. protegens CHA0 wild type and the mutant strain CHA1198 lacking the capacity to produce this acid, in a plant growth experiment with wheat (Triticum aestivum) and an incubation experiment. Neither in the plant growth- nor in the incubation experiment solubilization of Ca33P by strain CHA0 was detected, in spite the inoculated strain persisted in the rhizoplane of wheat and in the sterilized soil amended with glucose. No detected P solubilization in the sterilized inoculated soil suggests that glucose availability was the main limiting factor. The comparison of the results obtained from the two bacterial inoculants suggested that overall microbial activity, i.e., via protonation due to respiration, increased inorganic P mobilization. P solubilizing bacteria should be evaluated using a tracer and an appropriate bacterial control in order to reveal the mechanisms involved in increased plant available P in soil inoculated with P solubilizing bacteria
    corecore