6,694 research outputs found

    Electronic and magnetic properties of substitutional Mn clusters in (Ga,Mn)As

    Full text link
    The magnetization and hole distribution of Mn clusters in (Ga,Mn)As are investigated by all-electron total energy calculations using the projector augmented wave method within the density-functional formalism. It is found that the energetically most favorable clusters consist of Mn atoms surrounding one center As atom. As the Mn cluster grows the hole band at the Fermi level splits increasingly and the hole distribution gets increasingly localized at the center As atom. The hole distribution at large distances from the cluster does not depend significantly on the cluster size. As a consequence, the spin-flip energy differences of distant clusters are essentially independent of the cluster size. The Curie temperature TCT_C is estimated directly from these spin-flip energies in the mean field approximation. When clusters are present estimated TCT_C values are around 250 K independent of Mn concentration whereas for a uniform Mn distribution we estimate a TCT_C of about 600 K.Comment: 7 pages, 5 figures, 2 tables; Revised manuscript 26. May 200

    Decoupled and inhomogeneous gas flows in S0 galaxies

    Full text link
    A recent analysis of the "Einstein" sample of early-type galaxies has revealed that at any fixed optical luminosity Lb S0 galaxies have lower mean X-ray luminosity Lx per unit Lb than ellipticals. Following a previous analytical investigation of this problem (Ciotti & Pellegrini 1996), we have performed 2D numerical simulations of the gas flows inside S0 galaxies in order to ascertain the effectiveness of rotation and/or galaxy flattening in reducing the Lx/Lb ratio. The flow in models without SNIa heating is considerably ordered, and essentially all the gas lost by the stars is cooled and accumulated in the galaxy center. If rotation is present, the cold material settles in a disk on the galactic equatorial plane. Models with a time decreasing SNIa heating host gas flows that can be much more complex. After an initial wind phase, gas flows in energetically strongly bound galaxies tend to reverse to inflows. This occurs in the polar regions, while the disk is still in the outflow phase. In this phase of strong decoupling, cold filaments are created at the interface between inflowing and outflowing gas. Models with more realistic values of the dynamical quantities are preferentially found in the wind phase with respect to their spherical counterparts of equal Lb. The resulting Lx of this class of models is lower than in spherical models with the same Lb and SNIa heating. At variance with cooling flow models, rotation is shown to have only a marginal effect in this reduction, while the flattening is one of the driving parameters for such underluminosity, in accordance with the analytical investigation.Comment: 32 pages LaTex file, plus 5 .ps figures and macro aasms4.sty -- Accepted on Ap

    Light masking of the circatidal activity rhythm in the mangrove cricket Apteronemobius asahinai

    Get PDF
    Apteronemobius asahinai shows two rhythms in its locomotor activity. One is the circatidal rhythm, which produces active and inactive phases, and the other is the circadian rhythm, which suppresses the intensity of the activity of the circatidal active phase during the subjective day. In the present study, to reveal whether light suppresses locomotor activity by masking the circatidal rhythm without interfering with the circadian rhythm, we observed the activity under 23-h light–dark cycles before and after RNA interference (RNAi) of the circadian clock gene period (per RNAi), which disrupts the circadian rhythm but not the circatidal rhythm. Hyperactivity just after lights-on and lights-off was observed both before and after per RNAi. However, the activity levels were suppressed in the photophase as compared to the scotophase before per RNAi, but not suppressed in the photophase after per RNAi. Thus, the activity of A. asahinai is not directly suppressed by light

    Instability of two-dimensional heterotic stringy black holes

    Get PDF
    We solve the eigenvalue problem of general relativity for the case of charged black holes in two-dimensional heterotic string theory, derived by McGuigan et al. For the case of m2>q2m^{2}>q^{2}, we find a physically acceptable time-dependent growing mode; thus the black hole is unstable. The extremal case m2=q2m^{2}=q^{2} is stable.Comment: 11 pages, LaTe

    Stationary waves and slowly moving features in the night upper clouds of Venus

    Full text link
    At the cloud top level of Venus (65-70 km altitude) the atmosphere rotates 60 times faster than the underlying surface, a phenomenon known as superrotation. Whereas on Venus's dayside the cloud top motions are well determined and Venus general circulation models predict a mean zonal flow at the upper clouds similar on both day and nightside, the nightside circulation remains poorly studied except for the polar region. Here we report global measurements of the nightside circulation at the upper cloud level. We tracked individual features in thermal emission images at 3.8 and 5.0 ÎŒm\mathrm{\mu m} obtained between 2006 and 2008 by the Visible and Infrared Thermal Imaging Spectrometer (VIRTIS-M) onboard Venus Express and in 2015 by ground-based measurements with the Medium-Resolution 0.8-5.5 Micron Spectrograph and Imager (SpeX) at the National Aeronautics and Space Administration Infrared Telescope Facility (NASA/IRTF). The zonal motions range from -110 to -60 m s−1^{-1}, consistent with those found for the dayside but with larger dispersion. Slow motions (-50 to -20 m s−1^{-1}) were also found and remain unexplained. In addition, abundant stationary wave patterns with zonal speeds from -10 to +10 m s−1^{-1} dominate the night upper clouds and concentrate over the regions of higher surface elevation.Comment: 15 pages, 4 figures, 6 supplementary figure

    The Size of the Radio-Emitting Region in Low-luminosity Active Galactic Nuclei

    Full text link
    We have used the VLA to study radio variability among a sample of 18 low luminosity active galactic nuclei (LLAGNs), on time scales of a few hours to 10 days. The goal was to measure or limit the sizes of the LLAGN radio-emitting regions, in order to use the size measurements as input to models of the radio emission mechanisms in LLAGNs. We detect variability on typical time scales of a few days, at a confidence level of 99%, in half of the target galaxies. Either variability that is intrinsic to the radio emitting regions, or that is caused by scintillation in the Galactic interstellar medium, is consistent with the data. For either interpretation, the brightness temperature of the emission is below the inverse-Compton limit for all of our LLAGNs, and has a mean value of about 1E10 K. The variability measurements plus VLBI upper limits imply that the typical angular size of the LLAGN radio cores at 8.5 GHz is 0.2 milliarcseconds, plus or minus a factor of two. The ~ 1E10 K brightness temperature strongly suggests that a population of high-energy nonthermal electrons must be present, in addition to a hypothesized thermal population in an accretion flow, in order to produce the observed radio emission.Comment: 61 pages, 17 figures, 10 tables. Accepted for publication in the Astrophysical Journa

    Extraction of Black Hole Geometry in Exactly Quantized Two Dimensional Dilaton Gravity

    Full text link
    Based on our previous work, in which a model of two dimensional dilaton gravity of the type proposed by Callan, Giddings, Harvey and Strominger was rigorously quantized, we explicitly demonstrate how one can extract space-time geometry in exactly solvable theory of quantum gravity. In particular, we have been able to produce a prototypical configuration in which a ( smeared ) matter shock wave generates a black hole without naked sigularity.Comment: LATEX file 10 pages. UT-Komaba 93-13. 1 figure in postscrip

    The frequency in Japanese of genetic variants of 22 proteins III. Phosphoglucomutase-1, phosphoglucomutase-2, 6-phosphogluconate dehydrogenase, adenylate kinase, and adenosine deaminase

    Full text link
    Five enzyme systems, PGM 1 , PGM 2 , ADA, 6-PGD and AK, were examined by electrophoresis in over 4000 samples from Hiroshima and Nagasaki for the frequencies of common and rare variants. In the PGM 1 , system, the PGM 2 1 allele and PGM 7 1 ; allele were found in polymorphic proportions. I n addition, five kinds of slow variants and three types of fast variants of PGM 1 were detected. The PGM 3 NGS 1 1 allele was found in five individuals from Nagasaki, but was not observed in samples from Hiroshima. There were no variants of PGM 2 . Three kinds of fast variants of 6-PGD were detected. NO variation in AK was observed. There were no rare variants of ADA. The 6-PGD c allele had a frequency of 0.084 in Hiroshima, and 0.093 in Nagasaki, and the ADA 2 allele frequencies of 0.025 in Hiroshima and 0.032 in Nagasaki.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65524/1/j.1469-1809.1977.tb01912.x.pd

    Accuracy assessment of ISI-MIP modelled flows in the Hidukush-Karakoram-Himalayan basins

    Get PDF
    Large Asian rivers heading in the Hindukush-Karakoram-Himalayan mountains, and whose streamflow includes significant snow-melt and glacier-melt components, may be highly susceptible to climate warming and pattern changes. Millions of people depend on these streamflows for agriculture and power generation. Reliable predictions of future water availability are therefore needed for planning under a changing climate, and depend on the quality of hydro-climatic modelling. ISI-MIP provides global hydrological modelling results, and need validation at regional scale. This study evaluates the accuracy of modelled flows from the hydrological models used in ISI-MIP, in various sub-basins of the Upper Indus Basin (UIB) and for the reference period 1985-1998. The modelled flows are based on six hydrological models, which are: i) H08, ii) VIC, iii) WaterGAP, iv) WBM, v) MPI-HM, vi) PCR-GLOBWB. Of these models, H08 and VIC are energy-based hydrological models, while the others are temperature-based hydrological models. WBM and MPI are not suitable for the UIB, due to significant under-estimation (by 70-90%) of measured flows by their modelled flows. The remaining four models provide consistent, but still significantly under-estimated flows (up to 60% of measured flows) in all sub-basins, except the Kharmong basin. Monthly differences between modelled and measured flows vary between sub-basins, but with noticeable over-estimation in winter-spring months and under-estimation during summer months. Accuracy of the bias-corrected precipitation data sets (based on five GCMs) used in the ISI-MIP hydrological models has been assessed, using a basin-wide water balance assessment method. This method shows that all precipitation data sets significantly under-estimate precipitation in the UIB, particularly in the Karakoram sub-basins. The selected ISI-MIP hydrological models have used precipitation data which are under-estimates, which may be a main reason for under-estimated flows. ISI-MIP hydrological modelling needs to use the best available precipitation data for the UIB, but other input data and calibration parameters also need revision. An important message from this study is that caution must be exercised in selecting precipitation data sets and hydrological models in alpine regions such as the Hindukush-Karakoram-Himalayas
    • 

    corecore