28 research outputs found
The usefulness of c-Kit in the immunohistochemical assessment of melanocytic lesions
C-Kit (CD117), the receptor for the stem cell factor, a growth factor for melanocyte migra- tion and proliferation, has shown differential immunostaining in various benign and malig- nant melanocytic lesions. The purpose of this study is to compare c-Kit immunostaining in benign nevi and in primary and metastatic malignant melanomas, to determine whether c-Kit can aid in the differential diagnosis of these lesions. c-Kit immunostaining was per- formed in 60 cases of pigmented lesions, including 39 benign nevi (5 blue nevi, 5 intra- dermal nevi, 3 junctional nevi, 15 cases of pri- mary compound nevus, 11 cases of Spitz nevus), 18 cases of primary malignant melanoma and 3 cases of metastatic melanoma. The vast majority of nevi and melanomas examined in this study were posi- tive for c-Kit, with minimal differences between benign and malignant lesions. C-Kit cytoplasmatic immunoreactivity in the intraepidermal proliferating nevus cells, was detected in benign pigmented lesions as well as in malignant melanoma, increasing with the age of patients (P=0.007) in both groups. The patient’s age at presentation appeared to be the variable able to cluster benign and malignant pigmented lesions. The percentage of c-Kit positive intraepidermal nevus cells was better associated with age despite other vari- ables (P=0.014). The intensity and percentage of c-Kit positivity in the proliferating nevus cells in the dermis was significantly increased in malignant melanocytic lesions (P=0.015 and P=0.008) compared to benign lesions (compound melanocytic nevi, Spitz nevi, intradermal nevi, blue nevi). Immunostaning for c-Kit in metastatic melanomas was nega- tive. Interestingly in two cases of melanoma occurring on a pre-existent nevus, the melanoma tumor cells showed strong cytoplas- matic and membranous positivity for c-kit, in contrast with the absence of any immunoreac- tivity in pre-existent intradermal nevus cells. C-Kit does not appear to be a strong immuno- histochemical marker for distinguishing melanoma from melanocytic nevi, if we consid- er c-Kit expression in intraepidermal prolifer- ating cells. The c-Kit expression in proliferat- ing melanocytes in the dermis could help in the differential diagnosis between a superfi- cial spreading melanoma (with dermis inva- sion) and a compound nevus or an intradermal nevus. Finally, c-Kit could be a good diagnostic tool for distinguishing benign compound nevi from malignant melanocytic lesions with der- mis invasion and to differentiate metastatic melanoma from primary melanoma
Promoting Reuse with Active Reuse Repository Systems
Abstract. Software component-based reuse is diÆcult for software de-velopers to adopt because rst they must know what components exist in a reuse repository and then they must know how to retrieve them easily. This paper describes the concept and implementation of active reuse repository systems that address the above two issues. Active reuse repository systems employ active information delivery mechanisms to deliver potentially reusable components that are relevant to the current development task. They can help software developers reuse components they did not even know existed. They can also greatly reduce the cost of component location because software developers need neither to specify reuse queries explicitly, nor to switch working contexts back and forth between development environments and reuse repository systems.
The Science Performance of JWST as Characterized in Commissioning
This paper characterizes the actual science performance of the James Webb Space Telescope (JWST), as determined from the six month commissioning period. We summarize the performance of the spacecraft, telescope, science instruments, and ground system, with an emphasis on differences from pre-launch expectations. Commissioning has made clear that JWST is fully capable of achieving the discoveries for which it was built. Moreover, almost across the board, the science performance of JWST is better than expected; in most cases, JWST will go deeper faster than expected. The telescope and instrument suite have demonstrated the sensitivity, stability, image quality, and spectral range that are necessary to transform our understanding of the cosmos through observations spanning from near-earth asteroids to the most distant galaxies
The James Webb Space Telescope Mission
Twenty-six years ago a small committee report, building on earlier studies,
expounded a compelling and poetic vision for the future of astronomy, calling
for an infrared-optimized space telescope with an aperture of at least .
With the support of their governments in the US, Europe, and Canada, 20,000
people realized that vision as the James Webb Space Telescope. A
generation of astronomers will celebrate their accomplishments for the life of
the mission, potentially as long as 20 years, and beyond. This report and the
scientific discoveries that follow are extended thank-you notes to the 20,000
team members. The telescope is working perfectly, with much better image
quality than expected. In this and accompanying papers, we give a brief
history, describe the observatory, outline its objectives and current observing
program, and discuss the inventions and people who made it possible. We cite
detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space
Telescope Overview, 29 pages, 4 figure
The healing potential of an acutely repaired ACL. a sequential MRI study
Background: Recently, there has been renewed interest in primary anterior cruciate ligament (ACL) repair. The aim of this study is to report early clinical and radiological results of a consecutive series of acute ACL tears treated with arthroscopic primary ACL repair within 14 days from injury. Patients and methods: A consecutive series of patients with acute ACL tears were prospectively included in the study. Based on MRI appearance, ACL tears were classified into five types, and tissue quality was graded as good, fair, and poor. Patients with type I, II, and III tears and at least 50% of ACL tibial remnant intact with good tissue quality were ultimately included. Clinical outcomes were measured using the Tegner Lysholm Knee Scoring Scale (TLKSS), the Knee Injury and Osteoarthritis Outcome Score (KOOS), subjective and objective International Knee Documentation Committee (IKDC) scores, and KT-1000. Patients were also followed up with MRI evaluations at 1, 3, and 6 months postoperatively. ACL appearance was graded based on morphology (normal or abnormal) and signal intensity (isointense, intermediate, and hyperintense). Results: The mean TLKSS was 98.1, the mean subjective IKDC was 97.6, and the mean KOOS was 98.2. The objective IKDC score was A in eight of ten patients and B in two patients. KT-1000 measurements showed a maximum manual side-to-side difference of less than 2 mm in eight of ten patients, whereas two patients showed a difference of 3 mm. The morphology of the repaired ACL was normal (grade 1) at 1 month follow-up in ten of ten cases, and this appearance persisted at 3 and 6 months postoperatively. The signal intensity at 1 month postoperatively was graded as isointense (grade 1) in four of ten patients, intermediate (grade 2) in five of ten patients, and hyperintense (grade 3) in one of ten patients. At both 3 and 6 months postoperatively, the signal intensity was graded as isointense (grade 1) in nine of ten patients and intermediate (grade 2) in one of ten patients. Conclusions: Arthroscopic primary ACL repair performed acutely in a carefully selected group of patients with proximal ACL tears and good tissue quality showed good early clinical and radiological results. Level of evidence: Level 4
Updated status and performance for the cosmic origins spectrograph onboard the Hubble Space Telescope
The Cosmic Origins Spectrograph (COS) was installed on the Hubble Space Telescope in May 2009. Although COS was initially designed to perform high-sensitivity medium- and low-resolution spectroscopy of astronomical objects in the 1150-3200 Å wavelength range, new wavelength settings have recently become available that allow medium-resolution spectroscopy down to 900 Å, at effective areas comparable to those of FUSE. Here we provide an update on the implementation of the new short wavelength settings G130M/1222, 1096, and 1055. We discuss changes to the Far-Ultraviolet (FUV) and Near-Ultraviolet (NUV) dark rates, FUV pulse height filtering, new and improved flux calibrations for FUV Lifetime Positions 1 and 2, changes in sensitivity for both the NUV and FUV channels, and give a general overview of the calibration projects undertaken in Cycles 19 and 20
Splash and Re-entrant albedo fluxes measured in the PAMELA experiment
AbstractThis work devoted to the description of the method for splash albedo protons identification in the satellite-born experiment PAMELA. In contrast to the reentrant albedo particles, which enter into the main aperture of the instrument, the direct albedo particles enter from the opposite direction, so they pass a few detectors, including calorimeter, before being register by the magnetic spectrometer. The developed method take into account the influence of these detectors on the selection of events and measurements of their characteristics. To test this method the energy spectrum of reentrant albedo protons in various regions of the near-Earth space reconstructed; it is in a good agreement with the classical measurements in the main aperture. Therefore, this method can be useful to obtain a new physical data about fluxes of splash albedo protons in the PAMELA experiment, which, unlike the reentrant albedo, can be study even at high geomagnetic latitudes