13 research outputs found

    Global mantle flow and the development of seismic anisotropy : differences between the oceanic and continental upper mantle

    Get PDF
    Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): B07317, doi:10.1029/2006JB004608.Viscous shear in the asthenosphere accommodates relative motion between Earth's surface plates and underlying mantle, generating lattice-preferred orientation (LPO) in olivine aggregates and a seismically anisotropic fabric. Because this fabric develops with the evolving mantle flow field, observations of seismic anisotropy can constrain asthenospheric flow patterns if the contribution of fossil lithospheric anisotropy is small. We use global viscous mantle flow models to characterize the relationship between asthenospheric deformation and LPO and compare the predicted pattern of anisotropy to a global compilation of observed shear wave splitting measurements. For asthenosphere >500 km from plate boundaries, simple shear rotates the LPO toward the infinite strain axis (ISA, the LPO after infinite deformation) faster than the ISA changes along flow lines. Thus we expect the ISA to approximate LPO throughout most of the asthenosphere, greatly simplifying LPO predictions because strain integration along flow lines is unnecessary. Approximating LPO with the ISA and assuming A-type fabric (olivine a axis parallel to ISA), we find that mantle flow driven by both plate motions and mantle density heterogeneity successfully predicts oceanic anisotropy (average misfit 13°). Continental anisotropy is less well fit (average misfit 41°), but lateral variations in lithospheric thickness improve the fit in some continental areas. This suggests that asthenospheric anisotropy contributes to shear wave splitting for both continents and oceans but is overlain by a stronger layer of lithospheric anisotropy for continents. The contribution of the oceanic lithosphere is likely smaller because it is thinner, younger, and less deformed than its continental counterpart.NSF grants EAR-0509882 (M.D.B. and C.P.C.), EAR-0609590 (C.P.C.), and EAR- 0215616 (P.G.S.

    Crustal Azimuthal Anisotropy Beneath the Central North China Craton Revealed by Receiver Functions

    Get PDF
    To characterize crustal anisotropy beneath the central North China Craton (CNCC), we apply a recently developed deconvolution approach to effectively remove near-surface reverberations in the receiver functions recorded at 200 broadband seismic stations and subsequently determine the fast orientation and the magnitude of crustal azimuthal anisotropy by fitting the sinusoidal moveout of the P to S converted phases from the Moho and intracrustal discontinuities. The magnitude of crustal anisotropy is found to range from 0.06 s to 0.54Â s, with an average of 0.25 ± 0.08Â s. Fault-parallel anisotropy in the seismically active Zhangjiakou-Penglai Fault Zone is significant and could be related to fluid-filled fractures. Historical strong earthquakes mainly occurred in the fault zone segments with significant crustal anisotropy, suggesting that the measured crustal anisotropy is closely related to the degree of crustal deformation. The observed spatial distribution of crustal anisotropy suggests that the northwestern terminus of the fault zone probably ends at about 114°E. Also observed is a sharp contrast in the fast orientations between the western and eastern Yanshan Uplifts separated by the North-South Gravity Lineament. The NW-SE trending anisotropy in the western Yanshan Uplift is attributable to fossil crustal anisotropy due to lithospheric extension of the CNCC, while extensional fluid-saturated microcracks induced by regional compressive stress are responsible for the observed ENE-WSW trending anisotropy in the eastern Yanshan Uplift. Comparison of crustal anisotropy measurements and previously determined upper mantle anisotropy implies that the degree of crust-mantle coupling in the CNCC varies spatially

    Magnetohydrodynamic rotating flow of a generalized burgers' fluid in a porous medium with hall current

    Get PDF
    This study concentrates on the unsteady magnetohydrodynamics (MHD) rotating flow of an incompressible generalized Burgers's fluid past a suddenly moved plate through a porous medium. Modified Darcy's law for generalized Burgers's fluid in a rotating frame has been used to model the governing flow problem. The closed form solution of the governing flow problem has been obtained by employing Laplace transform technique. The integral appearing in the inverse Laplace transform has been evaluated numerically. The influence of various parameters on the velocity profile has been delineated through several graphs and discussed in detail. It was found that the fluid is decelerated with increasing Hartmann number M and porosity parameter K. However, for large Hall parameter m, the real part of velocity decreases and the imaginary part of velocity increases

    Crustal and uppermost mantle structure variation beneath La R?union hotspot track

    No full text
    The Piton de la Fournaise basaltic volcano, on La RĂ©union Island in the western Indian Ocean, is one of the most active volcanoes in the world. This volcano is classically considered as the surface expression of an upwelling mantle plume and its activity is continuously monitored, providing detailed information on its superficial dynamics and on the edifice structure. Deeper crustal and upper mantle structure under La RĂ©union Island is surprisingly poorly constrained, motivating this study. We used receiver function techniques to determine a shear wave velocity profile through the crust and uppermost mantle beneath La RĂ©union, but also at other seismic stations located on the hotspot track, to investigate the plume and lithosphere interaction and its evolution through time. Receiver functions (RFs) were computed at permanent broad-band seismic stations from the GEOSCOPE network (on La RĂ©union and Rodrigues), at IRIS stations MRIV and DGAR installed on Mauritius and Diego Garcia islands, and at the GEOFON stations KAAM and HMDM on the Maldives. We performed non-linear inversions of RFs through modelling of P-to-S conversions at various crustal and upper mantle interfaces. Joint inversion of RF and surface wave dispersion data suggests a much deeper Mohorovičić discontinuity (Moho) beneath Mauritius (~21 km) compared to La RĂ©union (~12 km). A magmatic underplated body may be present under La RĂ©union as a thin layer (≀3 km thick), as suggested by a previous seismic refraction study, and as a much thicker layer beneath other stations located on the hotspot track, suggesting that underplating is an important process resulting from the plume-lithosphere interaction. We find evidence for a strikingly low velocity layer starting at about 33 km depth beneath La RĂ©union that we interpret as a zone of partial melt beneath the active volcano. We finally observe low velocities below 70 km beneath La RĂ©union and below 50 km beneath Mauritius that could represent the base of the oceanic lithosphere

    Crustal and upper-most mantle seismic structure beneath the Middle-east using surface-wave tomography

    No full text
    We have constructed a 3-D shear-wave velocity model for the crust and upper most mantle beneath the Middle-East by analysis of Rayleigh wave records obtained from ambient-noise correlation and regional earthquakes. We combined one decade of data collected from more than 850 permanent and temporary broadband stations in the region in order to calculate group velocity dispersion curves. We have in total >60000 ray paths giving reliable group velocity measurements for periods between 5 and 100 seconds. The group velocities calculated at different periods along individual ray paths were inverted for 2-D group-velocity maps. Due to the heterogeneous ray coverage, we pursue an adaptive parametrization for the group velocity tomography inversion. We then inverted the dispersion curves extracted at grid points of the 2-D group-velocity maps for 1-D shear-wave velocity profiles beneath each grid. The S-wave velocity model shows regions of low-velocities at shallow depths (5-10 km) beneath the Mesopotamian foredeep, south Caspian basin, eastern Mediterranean and Black Sea. These low velocity regions coincide with the thick sedimentary basins. Shallow high-velocity anomalies are observed in the regions with magmatic outcrops such as the Arabian Shield and NW Iran. In the upper crustal depth range (10-20 km), we clearly observe a band of high-velocity anomalies (> 4.0 km/s) along the Red Sea, indicating the presence of the upper mantle rocks in this depth range. Low velocity regions are observed beneath the Mesopotamian foredeep and Zagros implying the effect of thick sedimentary rocks comprising the upper crust. Our 3-D velocity model exhibits high velocities in the depth range 25-40 km beneath the western Arabia, south Caspian basin, eastern Mediterranean and Black Sea indicating a relatively thin crust beneath these regions, whereas the Zagros, NW Iran, the easternmost Anatolian plateau and Lesser Caucasus are characterized by low velocities at these depths. At least some of these anomalies may be related to thick crustal roots that support the high topography of these regions. In the upper mantle depth range, high-velocity anomalies are obtained beneath the Arabian Platform, southern Zagros and eastern Mediterranean and low velocities beneath Red Sea, Arabian Shield, Afar depression, Central Iran and eastern Turkey

    Magma-assisted rifting in Ethiopia

    Get PDF
    The rifting of continents and evolution of ocean basins is a fundamental component of plate tectonics, yet the process of continental break-up remains controversial. Plate driving forces have been estimated to be as much as an order of magnitude smaller than those required to rupture thick continental lithosphere1, 2. However, Buck1 has proposed that lithospheric heating by mantle upwelling and related magma production could promote lithospheric rupture at much lower stresses. Such models of mechanical versus magma-assisted extension can be tested, because they predict different temporal and spatial patterns of crustal and upper-mantle structure. Changes in plate deformation produce strain-enhanced crystal alignment and increased melt production within the upper mantle, both of which can cause seismic anisotropy3. The Northern Ethiopian Rift is an ideal place to test break-up models because it formed in cratonic lithosphere with minor far-field plate stresses4, 5. Here we present evidence of seismic anisotropy in the upper mantle of this rift zone using observations of shear-wave splitting. Our observations, together with recent geological data, indicate a strong component of melt-induced anisotropy with only minor crustal stretching, supporting the magma-assisted rifting model in this area of initially cold, thick continental lithosphere

    On the wobbles of phase-velocity dispersion curves

    No full text
    To calculate phase-velocity dispersion curves,we introduce amethodwhich reflects both structural and dynamic effects of wave propagation and interference. Rayleigh-wave fundamentalmode surface waves from the South Atlantic Ocean earthquake of 19 August 2016, M = 7.4, observed at the AlpArray network in Europe are strongly influenced by the upper-mantle lowvelocity zone under the Cameroon Volcanic Line in Central Africa. Predicting phase-delay times affected by diffraction from this heterogeneity for each station gives phase velocities as they would be determined using the classical two-station method as well as the advanced array-beamforming method. Synthetics from these two methods are thus compared with measurements. We show how the dynamic phase velocity differs from the structural phase velocity, howthese differences evolve in space and howtwo-station and arraymeasurements are affected. In principle, arrays are affected with the same uncertainty as the two-station measurements. The dynamic effects can be several times larger than the error caused by the unknown arrival angle in case of the two-station method. The non-planarity of the waves and its relation to the arrival angle and dynamic phase-velocity deviations is discussed. Our study is complemented by extensive review of literature related to the surface wave phase-velocity measurement of the last 120 years

    Coda-Q in the 2.5-20 s period band from seismic noise : application to the greater Alpine area

    No full text
    Coda-Q is used to estimate the attenuation and scattering properties of the Earth. So far focus has been on earthquake data at frequencies above 1 Hz, as the high noise level in the first and second microseismic peak, and possibly lower scattering coefficient, hinder stable measurements at lower frequencies. In this work, we measure and map coda-Q in the period bands 2.5-5 s, 5-10 s and 10-20 s in the greater Alpine region using noise cross-correlations between station pairs, based on data from permanent seismic stations and from the temporary AlpArray experiment. The observed coda-Q for short interstation distances is independent of azimuth so there is no indication of influence of the directivity of the incoming noise field on our measurements. In the 2.5-5 s and 5-10 s period bands, our measurements are self-consistent, and we observe stable geographic patterns of low and high coda-Q in the period bands 2.5-5 s and 5-10 s. In the period band 10-20 s, the dispersion of our measurements increases and geographic patterns become speculative. The coda-Q maps show that major features are observed with high resolution, with a very good geographical resolution of for example low coda-Q in the Po Plain. There is a sharp contrast between the Po Plain and the Alps and Apennines where coda-Q is high, with the exception a small area in the Swiss Alps which may be contaminated by the low coda-Q of the Po Plain. The coda of the correlations is too short to make independent measurements at different times within the coda, so we cannot distinguish between intrinsic and scattering Q. Measurements on more severely selected data sets and longer time-series result in identical geographical patterns but lower numerical values. Therefore, high coda-Q values may be overestimated, but the geographic distribution between high and low coda-Q areas is respected. Our results demonstrate that noise correlations are a promising tool for extending coda-Q measurements to frequencies lower than those analysed with earthquake data
    corecore