60 research outputs found
ANALYSIS OF THE PERFORMANCE OF AN UWB-BASED COOPERATIVE POSITIONING FOR DIFFERENT CAR PLATOON CONFIGURATIONS
Abstract. The increasing interest in autonomous vehicles motivates the researches aiming at developing reliable positioning system also in conditions challenging for the Global Navigation Satellite Systems (GNSS), such as in urban canyons, tunnels, under quite dense vegetation. The uso of Ultra Wide-Band (UWB) systems is among the quite well known methods for providing reasonable positioning results without exploiting GNSS. UWB systems are typically used indoors, however their use can be of interest also outdoors, in particular when the need is to ensure good positioning results over a quite small area. This paper investigates the use of UWB systems for positioning in the case of terrestrial vehicles, and, more specifically, it focuses on checking the influence of car platoon configurations on the performance of an UWB cooperative positioning system. In the considered tests, where a high percentage of UWB communications was successful, the obtained results show that the car configuration can have a quite remarkable impact on the positioning performance, doubling the obtained median error
Retrieval of temperature profiles from CHAMP for climate monitoring: intercomparison with Envisat MIPAS and GOMOS and different atmospheric analyses
International audienceThis study describes and evaluates a Global Navigation Satellite System (GNSS) radio occultation (RO) retrieval scheme particularly aimed at delivering bias-free atmospheric parameters for climate monitoring and research. The focus of the retrieval is on the sensible use of a priori information for careful high-altitude initialisation in order to maximise the usable altitude range. The RO retrieval scheme has been meanwhile applied to more than five years of data (September 2001 to present) from the German CHAllenging Minisatellite Payload for geoscientific research (CHAMP) satellite. In this study it was validated against various correlative datasets including the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) and the Global Ozone Monitoring for Occultation of Stars (GOMOS) sensors on Envisat, five different atmospheric analyses, and the operational CHAMP retrieval product from GeoForschungsZentrum (GFZ) Potsdam. In the global mean within 10 to 30 km altitude we find that the present validation observationally constrains the potential RO temperature bias to be <0.2 K. Latitudinally resolved analyses show biases to be observationally constrained to <0.2?0.5 K up to 35 km in most cases, and up to 30 km in any case, even if severely biased (about 10 K or more) a priori information is used in the high altitude initialisation of the retrieval. No evidence is found for the 10?35 km altitude range of residual RO bias sources other than those potentially propagated downward from initialisation, indicating that the widely quoted RO promise of "unbiasedness and long-term stability due to intrinsic self-calibration" can indeed be realised given care in the data processing to strictly limit structural uncertainty. The results thus reinforce that adequate high-altitude initialisation is crucial for accurate stratospheric RO retrievals. The common method of initialising, at some altitude in the upper stratosphere, the hydrostatic integral with an upper boundary temperature or pressure value derived from meteorological analyses is prone to introduce biases from the upper boundary down to below 25 km. Also above 30 to 35 km, GNSS RO delivers a considerable amount of observed information up to around 40 km, which is particularly interesting for numerical weather prediction (NWP) systems, where direct assimilation of non-initialised observed RO bending angles (free of a priori) is thus the method of choice. The results underline the value of RO for climate applications
ISPRS BENCHMARK ON MULTISENSORY INDOOR MAPPING AND POSITIONING
Abstract. In this paper, we present a publicly available benchmark dataset on multisensorial indoor mapping and positioning (MiMAP), which is sponsored by ISPRS scientific initiatives. The benchmark dataset includes point clouds captured by an indoor mobile laser scanning system in indoor environments of various complexity. The benchmark aims to stimulate and promote research in the following three fields: (1) LiDAR-based Simultaneous Localization and Mapping (SLAM); (2) automated Building Information Model (BIM) feature extraction; and (3) multisensory indoor positioning. The MiMAP project provides a common framework for the evaluation and comparison of LiDAR-based SLAM, BIM feature extraction, and smartphone-based indoor positioning methods. This paper describes the multisensory setup, data acquisition process, data description, challenges, and evaluation metrics included in the MiMAP project
Progress on isprs benchmark on multisensory indoor mapping and positioning
This paper presents the design of the benchmark dataset on multisensory indoor mapping and position (MIMAP) which is sponsored by ISPRS scientific initiatives. The benchmark dataset including point clouds captured by indoor mobile laser scanning system (IMLS) in indoor environments of various complexity. The benchmark aims to stimulate and promote research in the following three fields: (1) SLAM-based indoor point cloud generation; (2) automated BIM feature extraction from point clouds, with an emphasis on theelements, such as floors, walls, ceilings, doors, windows, stairs, lamps, switches, air outlets, that are involved in building managementand navigation tasks ; and (3) low-cost multisensory indoor positioning, focusing on the smartphone platform solution. MIMAP provides a common framework for the evaluation and comparison of LiDAR-based SLAM, BIM feature extraction, and smartphoneindoor positioning methods
Retrieval of temperature profiles from CHAMP for climate monitoring: intercomparison with Envisat MIPAS and GOMOS and different atmospheric analyses
This study describes and evaluates a Global Navigation Satellite System (GNSS) radio occultation (RO) retrieval scheme particularly aimed at delivering bias-free atmospheric parameters for climate monitoring and research. The focus of the retrieval is on the sensible use of a priori information for careful high-altitude initialisation in order to maximise the usable altitude range. The RO retrieval scheme has been meanwhile applied to more than five years of data (September 2001 to present) from the German CHAllenging Minisatellite Payload for geoscientific research (CHAMP) satellite. In this study it was validated against various correlative datasets including the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) and the Global Ozone Monitoring for Occultation of Stars (GOMOS) sensors on Envisat, five different atmospheric analyses, and the operational CHAMP retrieval product from GeoForschungsZentrum (GFZ) Potsdam. In the global mean within 10 to 30 km altitude we find that the present validation observationally constrains the potential RO temperature bias to be <0.2 K. Latitudinally resolved analyses show biases to be observationally constrained to <0.2–0.5K up to 35 km in most cases, and up to 30 km in any case, even if severely biased (about 10K or more) a priori information is used in the high altitude initialisation of the retrieval. No evidence is found for the 10–35 km altitude range of residual RO bias sources other than those potentially propagated downward from initialisation, indicating that the widely quoted RO promise of “unbiasedness and long-term stability due to intrinsic self-calibration” can indeed be realised given care in the data processing to strictly limit structural uncertainty. The results thus reinforce that adequate high-altitude initialisation is crucial for accurate stratospheric RO retrievals. The common method of initialising, at some altitude in the upper stratosphere, the hydrostatic integral with an upper boundary temperature or pressure value derived from meteorological analyses is prone to introduce biases from the upper boundary down to below 25 km. Also above 30 to 35 km, GNSS RO delivers a considerable amount of observed information up to around 40 km, which is particularly interesting for numerical weather prediction (NWP) systems, where direct assimilation of non-initialised observed RO bending angles (free of a priori) is thus the method of choice. The results underline the value of RO for climate applications
A new method for improving Wi-Fi based indoor positioning accuracy
Wi-Fi and smartphone based positioning technologies are play-ing a more and more important role in Location Based Service (LBS) indus-tries due to the rapid development of the smartphone market. However, the low positioning accuracy of these technologies is still an issue for indoor positioning. To address this problem, a new method for improving the in-door positioning accuracy was developed. The new method initially used the Nearest Neighbor (NN) algorithm of the fingerprinting method to iden-tify the initial position estimate of the smartphone user. Then two distance correction values in two roughly perpendicular directions were calculated by the pass loss model based on the two signal strength indicator (RSSI) values observed. The errors from the path loss model were eliminated through differencing two model-derived distances from the same access point. The new method was tested and the results were compared and as-sessed against that of the commercial Ekahau RTLS system and the NN algorithm. The preliminary results showed that the positioning accuracy has been improved consistently after the new method was applied and the root mean square accuracy was improved to 3.4 m from 3.8 m of the NN algorithm
Experimental evaluation of a UWB-based cooperative positioning system for pedestrians in GNSS-denied environment
Cooperative positioning (CP) utilises information sharing among multiple nodes to enable positioning in Global Navigation Satellite System (GNSS)-denied environments. This paper reports the performance of a CP system for pedestrians using Ultra-Wide Band (UWB) technology in GNSS-denied environments. This data set was collected as part of a benchmarking measurement campaign carried out at the Ohio State University in October 2017. Pedestrians were equipped with a variety of sensors, including two different UWB systems, on a specially designed helmet serving as a mobile multi-sensor platform for CP. Different users were walking in stop-and-go mode along trajectories with predefined checkpoints and under various challenging environments. In the developed CP network, both Peer-to-Infrastructure (P2I) and Peer-to-Peer (P2P) measurements are used for positioning of the pedestrians. It is realised that the proposed system can achieve decimetre-level accuracies (on average, around 20 cm) in the complete absence of GNSS signals, provided that the measurements from infrastructure nodes are available and the network geometry is good. In the absence of these good conditions, the results show that the average accuracy degrades to meter level. Further, it is experimentally demonstrated that inclusion of P2P cooperative range observations further enhances the positioning accuracy and, in extreme cases when only one infrastructure measurement is available, P2P CP may reduce positioning errors by up to 95%. The complete test setup, the methodology for development, and data collection are discussed in this paper. In the next version of this system, additional observations such as the Wi-Fi, camera, and other signals of opportunity will be included
The impact of using assimilated Aeolus wind data on regional WRF-Chem dust simulations
Land–atmosphere interactions govern the process of dust emission and transport. An accurate depiction of these physical processes within numerical weather prediction models allows for better estimating the spatial and temporal distribution of the dust burden and the characterisation of source and recipient areas. In the presented study, the ECMWF-IFS (European Centre for Medium-Range Weather Forecast – Integrated Forecasting System) outputs, produced with and without the assimilation of Aeolus quality-assured Rayleigh–clear and Mie–cloudy horizontal line-of-sight wind profiles, are used as initial or boundary conditions in the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) to simulate 2-month periods in the spring and autumn of 2020, focusing on a case study in October. The experiments have been performed over the broader eastern Mediterranean and Middle East (EMME) region, which is frequently subjected to dust transport, as it encompasses some of the most active erodible dust sources. Aerosol- and dust-related model outputs (extinction coefficient, optical depth and concentrations) are qualitatively and quantitatively evaluated against ground- and satellite-based observations. Ground-based columnar and vertically resolved aerosol optical properties are acquired through AERONET sun photometers and PollyXT lidar, while near-surface concentrations are taken from EMEP. Satellite-derived vertical dust and columnar aerosol optical properties are acquired through LIVAS (LIdar climatology of Vertical Aerosol Structure) and MIDAS (ModIs Dust AeroSol), respectively.
Overall, in cases of either high or low aerosol loadings, the model predictive skill is improved when WRF-Chem simulations are initialised with the meteorological fields of Aeolus wind profiles assimilated by the IFS. The improvement varies in space and time, with the most significant impact observed during the autumn months in the study region. Comparison with observation datasets saw a remarkable improvement in columnar aerosol optical depths, vertically resolved dust mass concentrations and near-surface particulate concentrations in the assimilated run against the control run. Reductions in model biases, either positive or negative, and an increase in the correlation between simulated and observed values was achieved for October 2020.</p
- …