5 research outputs found
Continuous Glucose Monitoring Within Hospital: A Scoping Review and Summary of Guidelines From the Joint British Diabetes Societies for Inpatient Care
Increasing numbers of people, particularly with type 1 diabetes (T1D), are using wearable technologies. That is, continuous subcutaneous insulin infusion (CSII) pumps, continuous glucose monitoring (CGM) systems, and hybrid closed-loop systems, which combine both these elements. Given over a quarter of all people admitted to hospital have diabetes, there is a need for clinical guidelines for when people using them are admitted to hospital. The Joint British Diabetes Societies for Inpatient Care (JBDS-IP) provide a scoping review and summary of guidelines on the use of diabetes technology in people with diabetes admitted to hospital. JBDS-IP advocates enabling people who can self-manage and use their own diabetes technology to continue doing so as they would do out of hospital. Whilst people with diabetes are recommended to achieve a target of 70% time within range (3.9-10.0 mmol/L [70-180 mg/dL]), this can be very difficult to achieve whilst unwell. We therefore recommend targeting hypoglycemia prevention as a priority, keeping time below 3.9 mmol/L (70 mg/dL) at < 1%, being aware of looming hypoglycemia if glucose is between 4.0 and 5.9 mmol/L (72-106 mg/dL), and consider intervening, particularly if there is a downward CGM trend arrow. Health care organizations need clear local policies and guidance to support individuals using diabetes technologies, and ensure the relevant workforce is capable and skilled enough to ensure their safe use within the hospital setting. The current set of guidelines is divided into two parts. Part 1, which follows below, outlines the guidance for use of CGM in hospital. The second part outlines guidance for use of CSII and hybrid closed-loop in hospital.</p
Insulin Pumps and Hybrid Close Loop Systems Within Hospital: A Scoping Review and Practical Guidance From the Joint British Diabetes Societies for Inpatient Care
This article is the second of a two-part series providing a scoping review and summary of the Joint British Diabetes Societies for Inpatient Care (JBDS-IP) guidelines on the use of diabetes technology in people with diabetes admitted to hospital. The first part reviewed the use of continuous glucose monitoring (CGM) in hospital. In this article, we focus on the use of continuous subcutaneous insulin infusion (CSII; insulin pumps) and hybrid closed-loop systems in hospital. JBDS-IP advocates enabling people who can self-manage and are willing and capable of using CSII to continue doing so as they would do out of hospital. CSII should be discontinued if the individual is critically ill or hemodynamically unstable. For individuals on hybrid closed-loop systems, the system should be discontinued from auto-mode, and may be used individually (as CGM only or CSII only, if criteria are met). Continuing in closed-loop mode may only be done so under specialist guidance from the Diabetes Team, where the diabetes teams are comfortable and knowledgeable about the specific devices used. Health care organizations need to have clear local policies and guidance to support individuals using these wearable technologies, and ensure the relevant workforce is capable and skilled enough to ensure their safe use within the hospital setting
Using Technology to Improve Diabetes Care in Hospital: The Challenge and the Opportunity
The past 10 years have seen a revolution in technology improving the lives of people with diabetes. This has implications for diabetes care in hospitalized inpatients. These technological developments have the potential to significantly improve the care of people with diabetes in hospital. Combining point of care glucose monitoring, electronic prescribing, electronic observations with electronic referral, and electronic health records allow teams to daily oversee the whole hospital population. To make the most of these tools as well as developing the use of pumps and glucose sensors in hospital, the diabetes team needs to work in new ways. To date, very little work has described how these should be combined. We describe how this technology can be combined to improve diabetes care in hospital.</p
A roadmap to recovery: ABCD recommendations on risk stratification of adult patients with diabetes in the post COVID-19 era.
A third of the over 40,000 deaths in the UK attributed to the first wave of the COVID-19 pandemic occurred in people with diabetes. However, the focus on emergency response to COVID-19 in the first few months has had a major knock-on impact on the delivery of routine clinical care for diabetes. Key challenges as we enter the second wave of the pandemic include a backlog of appointments, delays in accessing care such as structured education, and initiating insulin, GLP-1 or diabetes technology. We anticipate ongoing pressures through increased commitments to general medicine, reductions in clinic capacities due to social distancing and reorganisation of clinic spaces. Many services have already adapted by moving much of their activity to the virtual space
Continuous glucose monitoring in pregnant women with type 1 diabetes (CONCEPTT): a multicentre international randomised controlled trial
Background
Pregnant women with type 1 diabetes are a high-risk population who are recommended to strive for optimal glucose control, but neonatal outcomes attributed to maternal hyperglycaemia remain suboptimal. Our aim was to examine the effectiveness of continuous glucose monitoring (CGM) on maternal glucose control and obstetric and neonatal health outcomes.
Methods
In this multicentre, open-label, randomised controlled trial, we recruited women aged 18–40 years with type 1 diabetes for a minimum of 12 months who were receiving intensive insulin therapy. Participants were pregnant (≤13 weeks and 6 days' gestation) or planning pregnancy from 31 hospitals in Canada, England, Scotland, Spain, Italy, Ireland, and the USA. We ran two trials in parallel for pregnant participants and for participants planning pregnancy. In both trials, participants were randomly assigned to either CGM in addition to capillary glucose monitoring or capillary glucose monitoring alone. Randomisation was stratified by insulin delivery (pump or injections) and baseline glycated haemoglobin (HbA1c). The primary outcome was change in HbA1c from randomisation to 34 weeks' gestation in pregnant women and to 24 weeks or conception in women planning pregnancy, and was assessed in all randomised participants with baseline assessments. Secondary outcomes included obstetric and neonatal health outcomes, assessed with all available data without imputation. This trial is registered with ClinicalTrials.gov, number NCT01788527.
Findings
Between March 25, 2013, and March 22, 2016, we randomly assigned 325 women (215 pregnant, 110 planning pregnancy) to capillary glucose monitoring with CGM (108 pregnant and 53 planning pregnancy) or without (107 pregnant and 57 planning pregnancy). We found a small difference in HbA1c in pregnant women using CGM (mean difference −0·19%; 95% CI −0·34 to −0·03; p=0·0207). Pregnant CGM users spent more time in target (68% vs 61%; p=0·0034) and less time hyperglycaemic (27% vs 32%; p=0·0279) than did pregnant control participants, with comparable severe hypoglycaemia episodes (18 CGM and 21 control) and time spent hypoglycaemic (3% vs 4%; p=0·10). Neonatal health outcomes were significantly improved, with lower incidence of large for gestational age (odds ratio 0·51, 95% CI 0·28 to 0·90; p=0·0210), fewer neonatal intensive care admissions lasting more than 24 h (0·48; 0·26 to 0·86; p=0·0157), fewer incidences of neonatal hypoglycaemia (0·45; 0·22 to 0·89; p=0·0250), and 1-day shorter length of hospital stay (p=0·0091). We found no apparent benefit of CGM in women planning pregnancy. Adverse events occurred in 51 (48%) of CGM participants and 43 (40%) of control participants in the pregnancy trial, and in 12 (27%) of CGM participants and 21 (37%) of control participants in the planning pregnancy trial. Serious adverse events occurred in 13 (6%) participants in the pregnancy trial (eight [7%] CGM, five [5%] control) and in three (3%) participants in the planning pregnancy trial (two [4%] CGM and one [2%] control). The most common adverse events were skin reactions occurring in 49 (48%) of 103 CGM participants and eight (8%) of 104 control participants during pregnancy and in 23 (44%) of 52 CGM participants and five (9%) of 57 control participants in the planning pregnancy trial. The most common serious adverse events were gastrointestinal (nausea and vomiting in four participants during pregnancy and three participants planning pregnancy).
Interpretation
Use of CGM during pregnancy in patients with type 1 diabetes is associated with improved neonatal outcomes, which are likely to be attributed to reduced exposure to maternal hyperglycaemia. CGM should be offered to all pregnant women with type 1 diabetes using intensive insulin therapy. This study is the first to indicate potential for improvements in non-glycaemic health outcomes from CGM use