341 research outputs found
Natural Killer Cells: Remembrances of Things Past
. Sperm competition, mating rate and the evolution of testis and ejaculate sizes: a population model. Biol. Lett. 1, 235-238. 5. Ramm, S., Parker, G.A., and Stockley, P. Sperm competition and the evolution of male reproductive anatomy in rodents. Proc. R. Soc. Lond. B. 272, 949-955
SLC19A1 transports immunoreactive cyclic dinucleotides.
The accumulation of DNA in the cytosol serves as a key immunostimulatory signal associated with infections, cancer and genomic damage1,2. Cytosolic DNA triggers immune responses by activating the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway3. The binding of DNA to cGAS activates its enzymatic activity, leading to the synthesis of a second messenger, cyclic guanosine monophosphate-adenosine monophosphate (2'3'-cGAMP)4-7. This cyclic dinucleotide (CDN) activates STING8, which in turn activates the transcription factors interferon regulatory factor 3 (IRF3) and nuclear factor Îș-light-chain-enhancer of activated B cells (NF-ÎșB), promoting the transcription of genes encoding type I interferons and other cytokines and mediators that stimulate a broader immune response. Exogenous 2'3'-cGAMP produced by malignant cells9 and other CDNs, including those produced by bacteria10-12 and synthetic CDNs used in cancer immunotherapy13,14, must traverse the cell membrane to activate STING in target cells. How these charged CDNs pass through the lipid bilayer is unknown. Here we used a genome-wide CRISPR-interference screen to identify the reduced folate carrier SLC19A1, a folate-organic phosphate antiporter, as the major transporter of CDNs. Depleting SLC19A1 in human cells inhibits CDN uptake and functional responses, and overexpressing SLC19A1 increases both uptake and functional responses. In human cell lines and primary cells ex vivo, CDN uptake is inhibited by folates as well as two medications approved for treatment of inflammatory diseases, sulfasalazine and the antifolate methotrexate. The identification of SLC19A1 as the major transporter of CDNs into cells has implications for the immunotherapeutic treatment of cancer13, host responsiveness to CDN-producing pathogenic microorganisms11 and-potentially-for some inflammatory diseases
The Role of Innate Immunity in Autoimmunity
During the 2004 International Congress of Immunology in Montreal, a panel of experts gathered for an âIdeashopâ discussion on the potential role of innate immunity in autoimmunity and the ways in which this might be targeted in future therapies
OpenDF - A Dataflow Toolset for Reconfigurable Hardware and Multicore Systems
This paper presents the OpenDF framework and recalls that dataflow programming was once invented to address the problem of parallel computing. We discuss the problems with an imperative style, von Neumann programs, and present what we believe are the advantages of using a dataflow programming model. The CAL actor language is briefly presented and its role in the ISO/MPEG standard is discussed. The Dataflow Interchange Format (DIF) and related tools can be used for analysis of actors and networks, demonstrating the advantages of a dataflow approach. Finally, an overview of a case study implementing an MPEG-4 decoder is given
Dataflow/Actor-Oriented language for the design of complex signal processing systems
Signal processing algorithms become more and more complex and the algorithm architecture adaptation and design processes cannot any longer rely only on the intuition of the designers to build efficient systems. Specific tools and methods are needed to cope with the increasing complexity of both algorithms and platforms. This paper presents a new framework which allows the specification, design, simulation and implementation of a system operating at a higher level of abstraction compared to current approaches. The framework is base on the usage of a new actor/dataflow oriented language called CAL. Such language has been specifically designed for modelling complex signal processing systems. CAL data flow models expose the intrinsic concurrency of the algorithms by employing the notions of actor programming and dataflow. Concurrency and parallelism are very important aspects of embedded system design as we enter in the multicore era. The design framework is composed by a simulation platform and by Cal2C and CAL2HDL code generators. This paper described in details the principles on which such code generators are based and shows how efficient software (C) and hardware (VHDL and Verilog) code can be generated by appropriate CAL models. Results on a real design case, a MPEG-4 Simple Profile decoder, show that systems obtained with the hardware code generator outperform the hand written VHDL version both in terms of performance and resource usage. Concerning the C code generator results, the results show that the synthesized C-software mapped on a SystemC scheduler platform, is much faster than the simulated CAL dataflow program and approaches handwritten C versions
Cellular expression, trafficking, and function of two isoforms of human ULBP5/RAET1G
Background:
The activating immunoreceptor NKG2D is expressed on Natural Killer (NK) cells and subsets of T cells. NKG2D contributes to anti-tumour and anti-viral immune responses in vitro and in vivo. The ligands for NKG2D in humans are diverse proteins of the MIC and ULBP/RAET families that are upregulated on the surface of virally infected cells and tumours. Two splicing variants of ULBP5/RAET1G have been cloned previously, but not extensively characterised.
Methodology/Principal Findings:
We pursue a number of approaches to characterise the expression, trafficking, and function of the two isoforms of ULBP5/RAET1G. We show that both transcripts are frequently expressed in cell lines derived from epithelial cancers, and in primary breast cancers. The full-length transcript, RAET1G1, is predicted to encode a molecule with transmembrane and cytoplasmic domains that are unique amongst NKG2D ligands. Using specific anti-RAET1G1 antiserum to stain tissue microarrays we show that RAET1G1 expression is highly restricted in normal tissues. RAET1G1 was expressed at a low level in normal gastrointestinal epithelial cells in a similar pattern to MICA. Both RAET1G1 and MICA showed increased expression in the gut of patients with celiac disease. In contrast to healthy tissues the RAET1G1 antiserum stained a wide variety or different primary tumour sections. Both endogenously expressed and transfected RAET1G1 was mainly found inside the cell, with a minority of the protein reaching the cell surface. Conversely the truncated splicing variant of RAET1G2 was shown to encode a soluble molecule that could be secreted from cells. Secreted RAET1G2 was shown to downregulate NKG2D receptor expression on NK cells and hence may represent a novel tumour immune evasion strategy.
Conclusions/Significance:
We demonstrate that the expression patterns of ULBP5RAET1G are very similar to the well-characterised NKG2D ligand, MICA. However the two isoforms of ULBP5/RAET1G have very different cellular localisations that are likely to reflect unique functionality
Matched sizes of activating and inhibitory receptor/ligand pairs are required for optimal signal integration by human Natural Killer cells
It has been suggested that receptor-ligand complexes segregate or co-localise within immune synapses according to their size, and this is important for receptor signaling. Here, we set out to test the importance of receptor-ligand complex dimensions for immune surveillance of target cells by human Natural Killer (NK) cells. NK cell activation is regulated by integrating signals from activating receptors, such as NKG2D, and inhibitory receptors, such as KIR2DL1. Elongating the NKG2D ligand MICA reduced its ability to trigger NK cell activation. Conversely, elongation of KIR2DL1 ligand HLA-C reduced its ability to inhibit NK cells. Whereas normal-sized HLA-C was most effective at inhibiting activation by normal-length MICA, only elongated HLA-C could inhibit activation by elongated MICA. Moreover, HLA-C and MICA that were matched in size co-localised, whereas HLA-C and MICA that were different in size were segregated. These results demonstrate that receptor-ligand dimensions are important in NK cell recognition, and suggest that optimal integration of activating and inhibitory receptor signals requires the receptor-ligand complexes to have similar dimensions
Two novel human cytomegalovirus NK cell evasion functions target MICA for lysosomal degradation
NKG2D plays a major role in controlling immune responses through the regulation of natural killer (NK) cells, αÎČ and γΎ T-cell function. This activating receptor recognizes eight distinct ligands (the MHC Class I polypeptide-related sequences (MIC) A andB, and UL16-binding proteins (ULBP)1â6) induced by cellular stress to promote recognition cells perturbed by malignant transformation or microbial infection. Studies into human cytomegalovirus (HCMV) have aided both the identification and characterization of NKG2D ligands (NKG2DLs). HCMV immediate early (IE) gene up regulates NKGDLs, and we now describe the differential activation of ULBP2 and MICA/B by IE1 and IE2 respectively. Despite activation by IE functions, HCMV effectively suppressed cell surface expression of NKGDLs through both the early and late phases of infection. The immune evasion functions UL16, UL142, and microRNA(miR)-UL112 are known to target NKG2DLs. While infection with a UL16 deletion mutant caused the expected increase in MICB and ULBP2 cell surface expression, deletion of UL142 did not have a similar impact on its target, MICA. We therefore performed a systematic screen of the viral genome to search of addition functions that targeted MICA. US18 and US20 were identified as novel NK cell evasion functions capable of acting independently to promote MICA degradation by lysosomal degradation. The most dramatic effect on MICA expression was achieved when US18 and US20 acted in concert. US18 and US20 are the first members of the US12 gene family to have been assigned a function. The US12 family has 10 members encoded sequentially through US12âUS21; a genetic arrangement, which is suggestive of an âaccordionâ expansion of an ancestral gene in response to a selective pressure. This expansion must have be an ancient event as the whole family is conserved across simian cytomegaloviruses from old world monkeys. The evolutionary benefit bestowed by the combinatorial effect of US18 and US20 on MICA may have contributed to sustaining the US12 gene family
Cytotoxic T cells expressing the co-stimulatory receptor NKG2 D are increased in cigarette smoking and COPD
<p>Abstract</p> <p>Background</p> <p>A suggested role for T cells in COPD pathogenesis is based on associations between increased lung cytotoxic T lymphocyte (CD8<sup>+</sup>) numbers and airflow limitation. CD69 is an early T cell activation marker. Natural Killer cell group 2 D (NKG2D) receptors are co-stimulatory molecules induced on CD8<sup>+ </sup>T cells upon activation. The activating function of NKG2 D is triggered by binding to MHC class 1 chain-related (MIC) molecules A and B, expressed on surface of stressed epithelial cells. The aim of this study was to evaluate the expression of MIC A and B in the bronchial epithelium and NKG2 D and CD69 on BAL lymphocytes in subjects with COPD, compared to smokers with normal lung function and healthy never-smokers.</p> <p>Methods</p> <p>Bronchoscopy with airway lavages and endobronchial mucosal biopsy sampling was performed in 35 patients with COPD, 21 healthy never-smokers and 16 smokers with normal lung function. Biopsies were immunohistochemically stained and BAL lymphocyte subsets were determined using flow cytometry.</p> <p>Results</p> <p>Epithelial CD3<sup>+ </sup>lymphocytes in bronchial biopsies were increased in both smokers with normal lung function and in COPD patients, compared to never-smokers. Epithelial CD8<sup>+ </sup>lymphocyte numbers were higher in the COPD group compared to never-smoking controls. Among gated CD3<sup>+</sup>cells in BAL, the percentage of CD8<sup>+ </sup>NKG2D<sup>+ </sup>cells was enhanced in patients with COPD and smokers with normal lung function, compared to never-smokers. The percentage of CD8<sup>+ </sup>CD69<sup>+ </sup>cells and cell surface expression of CD69 were enhanced in patients with COPD and smokers with normal lung function, compared to never-smokers. No changes in the expression of MIC A or MIC B in the airway epithelium could be detected between the groups, whereas significantly decreased soluble MICB was detected in bronchial wash from smokers with normal lung function, compared to never-smokers.</p> <p>Conclusions</p> <p>In COPD, we found increased numbers of cytotoxic T cells in both bronchial epithelium and airway lumen. Further, the proportions of CD69- and NKG2D-expressing cytotoxic T cells in BAL fluid were enhanced in both subjects with COPD and smokers with normal lung function and increased expression of CD69 was found on CD8<sup>+ </sup>cells, indicating the cigarette smoke exposure-induced expansion of activated cytotoxic T cells, which potentially can respond to stressed epithelial cells.</p
Defining Early Human NK Cell Developmental Stages in Primary and Secondary Lymphoid Tissues
A better understanding of human NK cell development in vivo is crucial to exploit NK cells for immunotherapy. Here, we identified seven distinctive NK cell developmental stages in bone marrow of single donors using 10-color flow cytometry and found that NK cell development is accompanied by early expression of stimulatory co-receptor CD244 in vivo. Further analysis of cord blood (CB), peripheral blood (PB), inguinal lymph node (inLN), liver lymph node (liLN) and spleen (SPL) samples showed diverse distributions of the NK cell developmental stages. In addition, distinctive expression profiles of early development marker CD33 and C-type lectin receptor NKG2A between the tissues, suggest that differential NK cell differentiation may take place at different anatomical locations. Differential expression of NKG2A and stimulatory receptors (e.g. NCR, NKG2D) within the different subsets of committed NK cells demonstrated the heterogeneity of the CD56brightCD16+/â and CD56dimCD16+ subsets within the different compartments and suggests that microenvironment may play a role in differential in situ development of the NK cell receptor repertoire of committed NK cells. Overall, differential in situ NK cell development and trafficking towards multiple tissues may give rise to a broad spectrum of mature NK cell subsets found within the human body
- âŠ