41 research outputs found
Theory and simulation of the confined Lebwohl-Lasher model
We discuss the Lebwohl-Lasher model of nematic liquid crystals in a confined
geometry, using Monte Carlo simulation and mean-field theory. A film of
material is sandwiched between two planar, parallel plates that couple to the
adjacent spins via a surface strength . We consider the cases where
the favoured alignments at the two walls are the same (symmetric cell) or
different (asymmetric or hybrid cell). In the latter case, we demonstrate the
existence of a {\it single} phase transition in the slab for all values of the
cell thickness. This transition has been observed before in the regime of
narrow cells, where the two structures involved correspond to different
arrangements of the nematic director. By studying wider cells, we show that the
transition is in fact the usual isotropic-to-nematic (capillary) transition
under confinement in the case of antagonistic surface forces. We show results
for a wide range of values of film thickness, and discuss the phenomenology
using a mean-field model.Comment: 40 pages 19 figures (preprint format). Part of the text and some
figures were modified. New figure was include
Dislocation loops in overheated free-standing smectic films
Static and dynamic phenomena in overheated free-standing smectic-A films are
studied using a generalization of de Gennes' theory for a confined presmectic
liquid. A static application is to determine the profile of the film meniscus
and the meniscus contact angle, the results being compared with those of a
recent study employing de Gennes' original theory. The dynamical generalization
of the theory is based on on a time-dependent Ginzburg-Landau approach. This is
used to compare two modes for layer-thinning transitions in overheated films,
namely "uniform thinning" vs. nucleation of dislocation loops. Properties such
as the line tension and velocity of a moving dislocation line are evaluated
self-consistently by the theory.Comment: 16 pages, 8 figure
The investigation of dangerous geological processes resulting in land subsidence while designing the main gas pipeline in South Yakutia
The number of gas main accidents has increased recently due to dangerous geological processes in underdeveloped areas located in difficult geological conditions. The paper analyses land subsidence caused by karst and thermokarst processes in the right of way, reveals the assessment criteria for geological hazards and creates zoning schemes considering the levels of karst and thermorkarst hazards
Density Functional for Anisotropic Fluids
We propose a density functional for anisotropic fluids of hard body
particles. It interpolates between the well-established geometrically based
Rosenfeld functional for hard spheres and the Onsager functional for elongated
rods. We test the new approach by calculating the location of the the
nematic-isotropic transition in systems of hard spherocylinders and hard
ellipsoids. The results are compared with existing simulation data. Our
functional predicts the location of the transition much more accurately than
the Onsager functional, and almost as good as the theory by Parsons and Lee. We
argue that it might be suited to study inhomogeneous systems.Comment: To appear in J. Physics: Condensed Matte
Predicting phase equilibria in polydisperse systems
Many materials containing colloids or polymers are polydisperse: They
comprise particles with properties (such as particle diameter, charge, or
polymer chain length) that depend continuously on one or several parameters.
This review focusses on the theoretical prediction of phase equilibria in
polydisperse systems; the presence of an effectively infinite number of
distinguishable particle species makes this a highly nontrivial task. I first
describe qualitatively some of the novel features of polydisperse phase
behaviour, and outline a theoretical framework within which they can be
explored. Current techniques for predicting polydisperse phase equilibria are
then reviewed. I also discuss applications to some simple model systems
including homopolymers and random copolymers, spherical colloids and
colloid-polymer mixtures, and liquid crystals formed from rod- and plate-like
colloidal particles; the results surveyed give an idea of the rich
phenomenology of polydisperse phase behaviour. Extensions to the study of
polydispersity effects on interfacial behaviour and phase separation kinetics
are outlined briefly.Comment: 48 pages, invited topical review for Journal of Physics: Condensed
Matter; uses Institute of Physics style file iopart.cls (included
Modelando produtos IoT com a abordagem DDM / Modeling IoT products with the DDM approach
O Desenvolvimento Dirigido por Modelos (DDM), é uma abordagem de desenvolvimento de software onde os modelos são os artefatos principais do desenvolvimento. Nesta, modelos de aplicações são construídos em alto nível de abstração e convertidos em modelos menos abstratos até a geração do código fonte do sistema. A abordagem DDM tem se mostrado apropriada para desenvolver aplicações inseridas em ambientes heterogêneos, tais como os que envolvem diferentes plataformas e linguagens de programação, pois possibilita que sistemas sejam modelados independente de plataforma e que os modelos sejam reusados para geração de código em plataformas específicas. Neste contexto estão inseridos os sistemas para Internet das Coisas (IoT – Internet of Things), responsáveis por interconectar e integrar dispositivos do mundo físico ao mundo virtual. A IoT propõe que qualquer objeto físico possa se conectar à internet através de algum tipo de tecnologia. Desta forma, lida frequentemente com dispositivos diversos que utilizam tecnologias próprias e precisam estar interconectados para prover um serviço. Nesta direção, nosso trabalho investiga o uso de DDM no desenvolvimento de produtos IoT. Neste artigo, especificamente, apresentamos o projeto de um produto IoT para monitoramento e controle de reservatórios de água em residências com o objetivo de identificar os modelos que devem ser construídos ao longo do desenvolvimento de produtos desta natureza. O produto foi projetado e implementado manualmente. O trabalho mostrou que diversos modelos foram necessários para projetar hardware e software, tais como modelo de requisitos, arquitetura, e máquinas de estado. Estes modelos serão adaptados em projetos futuros seguindo a abordagem DDM para possibilitar a geração automática de código
Recommended from our members
Natural gas production problems : solutions, methodologies, and modeling.
Natural gas is a clean fuel that will be the most important domestic energy resource for the first half the 21st centtuy. Ensuring a stable supply is essential for our national energy security. The research we have undertaken will maximize the extractable volume of gas while minimizing the environmental impact of surface disturbances associated with drilling and production. This report describes a methodology for comprehensive evaluation and modeling of the total gas system within a basin focusing on problematic horizontal fluid flow variability. This has been accomplished through extensive use of geophysical, core (rock sample) and outcrop data to interpret and predict directional flow and production trends. Side benefits include reduced environmental impact of drilling due to reduced number of required wells for resource extraction. These results have been accomplished through a cooperative and integrated systems approach involving industry, government, academia and a multi-organizational team within Sandia National Laboratories. Industry has provided essential in-kind support to this project in the forms of extensive core data, production data, maps, seismic data, production analyses, engineering studies, plus equipment and staff for obtaining geophysical data. This approach provides innovative ideas and technologies to bring new resources to market and to reduce the overall environmental impact of drilling. More importantly, the products of this research are not be location specific but can be extended to other areas of gas production throughout the Rocky Mountain area. Thus this project is designed to solve problems associated with natural gas production at developing sites, or at old sites under redevelopment
Understanding Lignin Aggregation Processes. A Case Study: Budesonide Entrapment and Stimuli Controlled Release from Lignin Nanoparticles
The mechanism of lignin nanoprecipitation and subsequent self-assembly was elucidated by studying generation of lignin nanoparticles (LNPs) from aqueous ethanol. LNP formation was found to follow a kinetically controlled nucleation-growth mechanism in which large lignin molecules formed the initial critical nuclei. Using this information, we demonstrate entrapment of budesonide in LNPs and subsequent pH-triggered and surfactant-responsive release of this synthetic anti-inflammatory corticosteroid. Overall, our results not only provide a promising intestinal delivery system for budesonide but also deliver fundamental mechanistic understanding for the entrapment of actives in LNPs with controlled size and release properties
Fox baiting against Echinococcus multilocularis: Contrasted achievements among two medium size cities
In Europe, most cities are currently colonized by red foxes (Vulpes vulpes), which are considered to be the main definitive host of the zoonotic cestode Echinococcus multilocularis. The risk of transmission to humans is of particular concern where high fox populations overlap with high human populations. The distribution of baits containing praziquantel has successfully reduced the infection pressure in rural areas and in small plots within large cities. The purpose of this study was to assess its efficiency in two medium size cities (less than 100,000 inhabitants) in areas of high human alveolar echinococcosis incidence. From August 2006 to March 2009, 14 baiting campaigns of praziquantel treatment were run in Annemasse and Pontarlier (Eastern France), each of which encompassed 33km(2), with a density of 40baits/km(2). The bait consumption appeared to be lower in strictly urban context compared to suburban areas (78.9% vs. 93.4%) and lower in Annemasse than in Pontarlier (82.2% vs. 89.5%). During our study, the prevalence of E. multilocularis, as assessed by EM-ELISA on fox faeces collected in the field in Annemasse, was lower within the treated area than in the rural control area. A "before/during" treatment comparison revealed a significant decrease of spring prevalence from 13.3% to 2.2%. No significant change in prevalence was detected in Pontarlier (stable prevalence: 9.1%) where the contamination of the treated area followed the temporal trend observed in the control area. There, a greater resilience of the parasite's life cycle, probably due to a strong pressure of recontamination from outside the treated area, may have counteracted the prophylaxis treatment. These contrasted outcomes suggest that the frequency of fox anthelmintic treatment should be adapted to the local situation
Identifying drivers of fox and cat faecal deposits in kitchen gardens in order to evaluate measures for reducing contamination of fresh fruit and vegetables
International audiencePreventing foodborne pathogen contamination of raw fruit and vegetables in the field is critically important for public health. Specifically, it involves preventing faecal deposit by wildlife or domestic animals in fields of crops and kitchen gardens. The present study aims to identify the drivers of fox, dog and cat faecal deposits in kitchen gardens in order to mitigate the risk of contamination of raw produce with parasites shed in carnivore faeces. The focus was on Echinococcus multilocularis, ranked highest in the importance of foodborne parasites in Europe, but attention was also paid to other parasites of major concern - Toxoplasma gondii and Toxocara spp. During the winters of 2014 to 2016, faecal samples were collected from 192 kitchen gardens located in north-eastern France. From these samples, 77% contained scat of carnivores. Molecular analyses revealed that 59% of the 1016 faeces collected were from cats, 31% from foxes, and 10% from dogs. The ease of accessibility to kitchen gardens, the presence of food in the vicinity, and the composition of the surrounding vegetation were used to explain the distribution of fox and cat faeces. Generalized Linear Mixed Effects modelling showed that: i) fencing was not efficient in reducing cat faecal deposits, but drastically decreases those of foxes; ii) the abundance of Microtus sp. indicates a reason for the presence of both fox and cat faecal deposits, iii) the abundance of Arvicola terrestris, the proximity of fruit trees or farms and the predominance of forest and grassland around the village are all drivers of fox faecal deposits. These results point to the importance of fencing around kitchen gardens located in E. multilocularis endemic areas, particularly those surrounded by forest and grassland or close to fruit trees or farms