7,797 research outputs found

    Steady-state evolution of debris disks around A stars

    Get PDF
    In this paper a simple analytical model for the steady-state evolution of debris disks due to collisions is confronted with Spitzer observations of main sequence A stars. All stars are assumed to have planetesimal belts with a distribution of initial masses and radii. In the model disk mass is constant until the largest planetesimals reach collisional equilibrium whereupon the mass falls off oc 1/t. We find that the detection statistics and trends seen at both 24 and 70um can be fitted well by the model. While there is no need to invoke stochastic evolution or delayed stirring to explain the statistics, a moderate rate of stochastic events is not ruled out. Potentially anomalous systems are identified by a high dust luminosity compared with the maximum permissible in the model (HD3003, HD38678, HD115892, HD172555). Their planetesimals may have unusual properties (high strength or low eccentricity) or this dust could be transient. While transient phenomena are also favored for a few systems in the literature, the overall success of our model, which assumes planetesimals in all belts have the same strength, eccentricity and maximum size, suggests a large degree of uniformity in the outcome of planet formation. The distribution of planetesimal belt radii, once corrected for detection bias, follows N(r) oc r^{-0.8+-0.3} for 3-120AU. Since the inner edge is often attributed to an unseen planet, this provides a unique constraint on the planetary systems of A stars. It is also shown that P-R drag may sculpt the inner edges of A star disks close to the Spitzer detection threshold (HD2262, HD19356, HD106591, HD115892). This model can be readily applied to the interpretation of future surveys, and predictions are made for the upcoming SCUBA-2 survey, including that >17% of A stars should be detectable at 850um.Comment: Accepted by Ap

    Sub-millimeter images of a dusty Kuiper belt around eta Corvi

    Full text link
    We present sub-millimeter and mid-infrared images of the circumstellar disk around the nearby F2V star eta Corvi. The disk is resolved at 850um with a size of ~100AU. At 450um the emission is found to be extended at all position angles, with significant elongation along a position angle of 130+-10deg; at the highest resolution (9.3") this emission is resolved into two peaks which are to within the uncertainties offset symmetrically from the star at 100AU projected separation. Modeling the appearance of emission from a narrow ring in the sub-mm images shows the observed structure cannot be caused by an edge-on or face-on axisymmetric ring; the observations are consistent with a ring of radius 150+-20AU seen at 45+-25deg inclination. More face-on orientations are possible if the dust distribution includes two clumps similar to Vega; we show how such a clumpy structure could arise from the migration over 25Myr of a Neptune mass planet from 80-105AU. The inner 100AU of the system appears relatively empty of sub-mm emitting dust, indicating that this region may have been cleared by the formation of planets, but the disk emission spectrum shows that IRAS detected an additional hot component with a characteristic temperature of 370+-60K (implying a distance of 1-2AU). At 11.9um we found the emission to be unresolved with no background sources which could be contaminating the fluxes measured by IRAS. The age of this star is estimated to be ~1Gyr. It is very unusual for such an old main sequence star to exhibit significant mid-IR emission. The proximity of this source makes it a perfect candidate for further study from optical to mm wavelengths to determine the distribution of its dust.Comment: 22 pages, 4 figures. Scheduled for publication in ApJ 10 February 2005 issu
    corecore