131 research outputs found

    Theoretical Analysis of Acceptance Rates in Multigrid Monte Carlo

    Full text link
    We analyze the kinematics of multigrid Monte Carlo algorithms by investigating acceptance rates for nonlocal Metropolis updates. With the help of a simple criterion we can decide whether or not a multigrid algorithm will have a chance to overcome critial slowing down for a given model. Our method is introduced in the context of spin models. A multigrid Monte Carlo procedure for nonabelian lattice gauge theory is described, and its kinematics is analyzed in detail.Comment: 7 pages, no figures, (talk at LATTICE 92 in Amsterdam

    Cluster Algorithm for a Solid-On-Solid Model with Constraints

    Full text link
    We adapt the VMR (valleys-to-mountains reflections) algorithm, originally devised by us for simulations of SOS models, to the BCSOS model. It is the first time that a cluster algorithm is used for a model with constraints. The performance of this new algorithm is studied in detail in both phases of the model, including a finite size scaling analysis of the autocorrelations.Comment: 10 pages, 3 figures appended as ps-file

    Kinematics of Multigrid Monte Carlo

    Full text link
    We study the kinematics of multigrid Monte Carlo algorithms by means of acceptance rates for nonlocal Metropolis update proposals. An approximation formula for acceptance rates is derived. We present a comparison of different coarse-to-fine interpolation schemes in free field theory, where the formula is exact. The predictions of the approximation formula for several interacting models are well confirmed by Monte Carlo simulations. The following rule is found: For a critical model with fundamental Hamiltonian H(phi), absence of critical slowing down can only be expected if the expansion of in terms of the shift psi contains no relevant (mass) term. We also introduce a multigrid update procedure for nonabelian lattice gauge theory and study the acceptance rates for gauge group SU(2) in four dimensions.Comment: 28 pages, 8 ps-figures, DESY 92-09

    Critical Exponents of the 3D Ising Universality Class From Finite Size Scaling With Standard and Improved Actions

    Get PDF
    We propose a method to obtain an improved Hamiltonian (action) for the Ising universality class in three dimensions. The improved Hamiltonian has suppressed leading corrections to scaling. It is obtained by tuning models with two coupling constants. We studied three different models: the +1,-1 Ising model with nearest neighbour and body diagonal interaction, the spin-1 model with states 0,+1,-1, and nearest neighbour interaction, and phi**4-theory on the lattice (Landau-Ginzburg Hamiltonian). The remarkable finite size scaling properties of the suitably tuned spin-1 model are compared in detail with those of the standard Ising model. Great care is taken to estimate the systematic errors from residual corrections to scaling. Our best estimates for the critical exponents are nu= 0.6298(5) and eta= 0.0366(8), where the given error estimates take into account the statistical and systematic uncertainties.Comment: 55 pages, 12 figure

    Block Spin Effective Action for 4d SU(2) Finite Temperature Lattice Gauge Theory

    Get PDF
    The Svetitsky-Yaffe conjecture for finite temperature 4d SU(2) lattice gauge theory is confirmed by observing matching of block spin effective actions of the gauge model with those of the 3d Ising model. The effective action for the gauge model is defined by blocking the signs of the Polyakov loops with the majority rule. To compute it numerically, we apply a variant of the IMCRG method of Gupta and Cordery.Comment: LaTeX2e, 22 pages, 8 Figure

    Effective Field Theories

    Get PDF
    Effective field theories encode the predictions of a quantum field theory at low energy. The effective theory has a fairly low ultraviolet cutoff. As a result, loop corrections are small, at least if the effective action contains a term which is quadratic in the fields, and physical predictions can be read straight from the effective Lagrangean. Methods will be discussed how to compute an effective low energy action from a given fundamental action, either analytically or numerically, or by a combination of both methods. Basically,the idea is to integrate out the high frequency components of fields. This requires the choice of a "blockspin",i.e. the specification of a low frequency field as a function of the fundamental fields. These blockspins will be the fields of the effective field theory. The blockspin need not be a field of the same type as one of the fundamental fields, and it may be composite. Special features of blockspins in nonabelian gauge theories will be discussed in some detail. In analytical work and in multigrid updating schemes one needs interpolation kernels \A from coarse to fine grid in addition to the averaging kernels CC which determines the blockspin. A neural net strategy for finding optimal kernels is presented. Numerical methods are applicable to obtain actions of effective theories on lattices of finite volume. The constraint effective potential) is of particular interest. In a Higgs model it yields the free energy, considered as a function of a gauge covariant magnetization. Its shape determines the phase structure of the theory. Its loop expansion with and without gauge fields can be used to determine finite size corrections to numerical data.Comment: 45 pages, 9 figs., preprint DESY 92-070 (figs. 3-9 added in ps format

    Randomly dilute Ising model: A nonperturbative approach

    Full text link
    The N-vector cubic model relevant, among others, to the physics of the randomly dilute Ising model is analyzed in arbitrary dimension by means of an exact renormalization-group equation. This study provides a unified picture of its critical physics between two and four dimensions. We give the critical exponents for the three-dimensional randomly dilute Ising model which are in good agreement with experimental and numerical data. The relevance of the cubic anisotropy in the O(N) model is also treated.Comment: 4 pages, published versio

    Multigrid Monte Carlo Algorithms for SU(2) Lattice Gauge Theory: Two versus Four Dimensions

    Get PDF
    We study a multigrid method for nonabelian lattice gauge theory, the time slice blocking, in two and four dimensions. For SU(2) gauge fields in two dimensions, critical slowing down is almost completely eliminated by this method. This result is in accordance with theoretical arguments based on the analysis of the scale dependence of acceptance rates for nonlocal Metropolis updates. The generalization of the time slice blocking to SU(2) in four dimensions is investigated analytically and by numerical simulations. Compared to two dimensions, the local disorder in the four dimensional gauge field leads to kinematical problems.Comment: 24 pages, PostScript file (compressed and uuencoded), preprint MS-TPI-94-

    Algebraic Computation of the Hierarchical Renormalization Group Fixed Points and their ϵ\epsilon-Expansions

    Full text link
    Nontrivial fixed points of the hierarchical renormalization group are computed by numerically solving a system of quadratic equations for the coupling constants. This approach avoids a fine tuning of relevant parameters. We study the eigenvalues of the renormalization group transformation, linearized around the non-trivial fixed points. The numerical results are compared with ϵ\epsilon-expansion.Comment: LaTex file, 24 pages, 5 figures appended as 1 PostScript file, preprint MS-TPI-94-
    corecore