586 research outputs found

    Cross-spectral analysis of physiological tremor and muscle activity. I. Theory and application to unsynchronized EMG

    Full text link
    We investigate the relationship between the extensor electromyogram (EMG) and tremor time series in physiological hand tremor by cross-spectral analysis. Special attention is directed to the phase spectrum and the effects of observational noise. We calculate the theoretical phase spectrum for a second order linear stochastic process and compare the results to measured tremor data recorded from subjects who did not show a synchronized EMG activity in the corresponding extensor muscle. The results show that physiological tremor is well described by the proposed model and that the measured EMG represents a Newtonian force by which the muscle acts on the hand.Comment: 9 pages, 6 figures, to appear in Biological Cybernetic

    Application of BRET to monitor ligand binding to GPCRs

    Get PDF
    Bioluminescence resonance energy transfer (BRET) is a well-established method for investigating protein-protein interactions. Here we present a BRET approach to monitor ligand binding to G protein–coupled receptors (GPCRs) on the surface of living cells made possible by the use of fluorescent ligands in combination with a bioluminescent protein (NanoLuc) that can be readily expressed on the N terminus of GPCRs

    ¿El estudio radiográfico de senos paranasales es útil para confirmar el diagnóstico de sinusitis aguda?

    Get PDF
    La sinusitis es una patología frecuente en la práctica clínica; se considera que entre un 5 y un 10 % de las infecciones de la vía aérea superior se complican con infección de los senos paranasales. Considerando que el promedio de las infecciones respiratorias anuales en los niños oscila entre los 6 y 8 episodios se estima que la incidencia de sinusitis es elevada, aunque difícil de precisar. Por cuestiones anatómicas y funcionales hay mayor incidencia de esta afección durante la infancia. Por sinusitis se entiende la inflamación de origen infeccioso de la mucosa de los senos paranasales, y su diagnóstico es clínico. METODOLOGÍA: Desde la exposición de un escenario clínico se planteó una pregunta estructurada para luego realizar una búsqueda bibliográfica con el fin de dar respuesta sobre la necesidad del uso de estudios radiográficos de los senos paranasales para el diagnóstico de la sinusitis aguda en niños. Se realizó búsqueda en PubMed utilizando los Mesh (Medical Subject Headings) sinusitis AND radiography y aplicando distintos filtros, tras lo cual se encontró sólo un meta-análisis y, consultado la bibliografía citada por éste, se hayo un único estudio específico para población pediátrica. ANÁLISIS DEL ARTÍCULO: El diseño del trabajo no es específico para un estudio de diagnóstico, por lo que para el análisis de la validez estadística del artículo debimos realizar un análisis secundario de los datos del mismo con el fin de definir los valores de sensibilidad, especificidad, valor predictivo positivo y valor predictivo negativo, con sus respectivos IC95%, a fin de aproximarnos a una conclusión más confiable. Dentro de estos resultados se obtuvo una sensibilidad del 76,04% con un intervalo de confianza del 95% (IC 95 %) de 66,61 - 83,47%, y una especificidad de 69,62% (IC 95% de 58,77-78,66%). RECOMENDACIÓN FINAL: Por lo tanto, no se recomienda realizar radiografías de senos paranasales en niños con episodios de sinusitis. El diagnóstico de sinusitis aguda en niños se hace sobre la base de criterios clínicos estrictos que describen signos, síntomas y patrones temporales de una infección de la vía respiratoria alta

    A novel 3-hydroxypropionic acid-inducible promoter regulated by the LysR-type transcriptional activator protein MmsR of Pseudomonas denitrificans

    Get PDF
    MmsR (33.3 kDa) is a putative LysR-type transcriptional activator of Pseudomonas denitrificans. With the help of 3-hydroxypropionic acid (3-HP), an important platform chemical, MmsR positively regulates the expression of mmsA, which encodes methylmalonylsemialdehyde dehydrogenase, the enzyme involved in valine degradation. In the present study, the cellular function of MmsR and its binding to the regulatory DNA sequence of mmsA expression were investigated both in vivo and in vitro. Transcription of the mmsA was enhanced >140-fold in the presence of 3-HP. In the MmsR-responsive promoter region, two operators showing dyad symmetry, designated O-1 and O-2 and centered at the -79 and -28 positions, respectively, were present upstream of the mmsA transcription start site. An electrophoretic mobility shift assay indicated that MmsR binds to both operator sites for transcription activation, probably in cooperative manner. When either O-1 or O-2 or both regions were mutated, the inducibility by the MmsR-3-HP complex was significantly reduced or completely removed, indicating that both sites are required for transcription activation. A 3-HP sensor was developed by connecting the activation of MmsR to a green fluorescent readout. A more than 50-fold induction by 25 mM 3-HP was observed

    GPS-ARM: Computational Analysis of the APC/C Recognition Motif by Predicting D-Boxes and KEN-Boxes

    Get PDF
    Anaphase-promoting complex/cyclosome (APC/C), an E3 ubiquitin ligase incorporated with Cdh1 and/or Cdc20 recognizes and interacts with specific substrates, and faithfully orchestrates the proper cell cycle events by targeting proteins for proteasomal degradation. Experimental identification of APC/C substrates is largely dependent on the discovery of APC/C recognition motifs, e.g., the D-box and KEN-box. Although a number of either stringent or loosely defined motifs proposed, these motif patterns are only of limited use due to their insufficient powers of prediction. We report the development of a novel GPS-ARM software package which is useful for the prediction of D-boxes and KEN-boxes in proteins. Using experimentally identified D-boxes and KEN-boxes as the training data sets, a previously developed GPS (Group-based Prediction System) algorithm was adopted. By extensive evaluation and comparison, the GPS-ARM performance was found to be much better than the one using simple motifs. With this powerful tool, we predicted 4,841 potential D-boxes in 3,832 proteins and 1,632 potential KEN-boxes in 1,403 proteins from H. sapiens, while further statistical analysis suggested that both the D-box and KEN-box proteins are involved in a broad spectrum of biological processes beyond the cell cycle. In addition, with the co-localization information, we predicted hundreds of mitosis-specific APC/C substrates with high confidence. As the first computational tool for the prediction of APC/C-mediated degradation, GPS-ARM is a useful tool for information to be used in further experimental investigations. The GPS-ARM is freely accessible for academic researchers at: http://arm.biocuckoo.org

    Investigation of Receptor Heteromers Using NanoBRET Ligand Binding

    Get PDF
    Receptor heteromerization is the formation of a complex involving at least two different receptors with pharmacology that is distinct from that exhibited by its constituent receptor units. Detection of these complexes and monitoring their pharmacology is crucial for understanding how receptors function. The Receptor-Heteromer Investigation Technology (Receptor-HIT) utilizes liganddependent modulation of interactions between receptors and specific biomolecules for the detection and profiling of heteromer complexes. Previously, the interacting biomolecules used in ReceptorHIT assays have been intracellular proteins, however in this study we have for the first time used bioluminescence resonance energy transfer (BRET) with fluorescently-labeled ligands to investigate heteromerization of receptors on the cell surface. Using the Receptor-HIT ligand binding assay with NanoBRET, we have successfully investigated heteromers between the angiotensin II type 1 (AT1 ) receptor and the β2 adrenergic receptor (AT1-β2AR heteromer), as well as between the AT1 and angiotensin II type 2 receptor (AT1-AT2 heteromer)

    SProtP: A Web Server to Recognize Those Short-Lived Proteins Based on Sequence-Derived Features in Human Cells

    Get PDF
    Protein turnover metabolism plays important roles in cell cycle progression, signal transduction, and differentiation. Those proteins with short half-lives are involved in various regulatory processes. To better understand the regulation of cell process, it is important to study the key sequence-derived factors affecting short-lived protein degradation. Until now, most of protein half-lives are still unknown due to the difficulties of traditional experimental methods in measuring protein half-lives in human cells. To investigate the molecular determinants that affect short-lived proteins, a computational method was proposed in this work to recognize short-lived proteins based on sequence-derived features in human cells. In this study, we have systematically analyzed many features that perhaps correlated with short-lived protein degradation. It is found that a large fraction of proteins with signal peptides and transmembrane regions in human cells are of short half-lives. We have constructed an SVM-based classifier to recognize short-lived proteins, due to the fact that short-lived proteins play pivotal roles in the control of various cellular processes. By employing the SVM model on human dataset, we achieved 80.8% average sensitivity and 79.8% average specificity, respectively, on ten testing dataset (TE1-TE10). We also obtained 89.9%, 99% and 83.9% of average accuracy on an independent validation datasets iTE1, iTE2 and iTE3 respectively. The approach proposed in this paper provides a valuable alternative for recognizing the short-lived proteins in human cells, and is more accurate than the traditional N-end rule. Furthermore, the web server SProtP (http://reprod.njmu.edu.cn/sprotp) has been developed and is freely available for users

    Specific oligomerization of the 5-HT1A receptor in the plasma membrane

    Get PDF
    In the present study we analyze the oligomerization of the 5-HT1A receptor within living cells at the sub-cellular level. Using a 2-excitation Förster Resonance Energy Transfer (FRET) method combined with spectral microscopy we are able to estimate the efficiency of energy transfer based on donor quenching as well as acceptor sensitization between CFP-and YFP-tagged 5-HT1A receptors at the plasma membrane. Through the analysis of the level of apparent FRET efficiency over the various relative amounts of donor and acceptor, as well as over a range of total surface expressions of the receptor, we verify the specific interaction of these receptors. Furthermore we study the role of acylation in this interaction through measurements of a palmitoylation-deficient 5-HT1A receptor mutant. Palmitoylation increases the tendency of a receptor to localize in lipid rich microdomains of the plasma membrane. This increases the effective surface density of the receptor and provides for a higher level of stochastic interaction
    corecore