105 research outputs found

    All roads lead to Rome: the many ways to pluripotency

    Get PDF
    Cell pluripotency, spatial restriction, and development are spatially and temporally controlled by epigenetic regulatory mechanisms that occur without any permanent loss or alteration of genetic material, but rather through modifications "on top of it." These changes modulate the accessibility to transcription factors, either allowing or repressing their activity, thus shaping cell phenotype. Several studies have demonstrated the possibility to interact with these processes, reactivating silenced genes and inducing a high plasticity state, via an active demethylating effect, driven by ten-eleven translocation (TET) enzymes and an overall decrease of global methylation. In agreement with this, TET activities have been shown to be indispensable for mesenchymal to epithelial transition of somatic cells into iPSCs and for small molecule-driven epigenetic erasure. Beside the epigenetic mechanisms, growing evidences highlight the importance of mechanical forces in supporting cell pluripotency, which is strongly influenced by 3D rearrangement and mechanical properties of the surrounding microenvironment, through the activation of specific mechanosensing-related pathways. In this review, we discuss and provide an overview of small molecule ability to modulate cell plasticity and define cell fate through the activation of direct demethylating effects. In addition, we describe the contribution of the Hippo signaling mechanotransduction pathway as one of the mechanisms involved in the maintenance of pluripotency during embryo development and its induction in somatic cells

    CENTROSOME BIOGENESIS AND ADAPTIVE RESPONSE IN MAMMAL PARTHENOGENETIC CELLS

    Get PDF
    Human parthenotes have been proposed as a source of embryonic stem cells despite the high incidence of aneuploidy described in parthenotes of most mammalian species. Through a comparative analysis between parthenogenetic and bi-parental cells lines we found that parthenogenetic cells are affected by chromosomal instability and centrosome amplification. We provide evidence that both alterations are determined by the lack of paternal centriole, normally contributed by the sperm at the time of fertilization, but parthenogenetic cell lines activate a series of adaptive mechanisms that allow them to proliferate and differentiate. These include down-regulation of the p53/p21 pathway, massive increase of autophagic activity and formation of a wide network of intercellular bridges with the morphological and molecular characters of blocked cell abscissions. These processes are commonly observed in transformed cells therefore parthenogenesis may be used to explore the mechanisms regulating oncogenesis and their link with self-renewal and pluripotency in human cell lines

    5-azacytidine affects TET2 and histone transcription and reshapes morphology of human skin fibroblasts

    Get PDF
    Phenotype definition is controlled by epigenetic regulations that allow cells to acquire their differentiated state. The process is reversible and attractive for therapeutic intervention and for the reactivation of hypermethylated pluripotency genes that facilitate transition to a higher plasticity state. We report the results obtained in human fibroblasts exposed to the epigenetic modifier 5-azacytidine (5-aza-CR), which increases adult cell plasticity and facilitates phenotype change. Although many aspects controlling its demethylating action have been widely investigated, the mechanisms underlying 5-aza-CR effects on cell plasticity are still poorly understood. Our experiments confirm decreased global methylation, but also demonstrate an increase of both Formylcytosine (5fC) and 5-Carboxylcytosine (5caC), indicating 5-aza-CR ability to activate a direct and active demethylating effect, possibly mediated via TET2 protein increased transcription. This was accompanied by transient upregulation of pluripotency markers and incremented histone expression, paralleled by changes in histone acetylating enzymes. Furthermore, adult fibroblasts reshaped into undifferentiated progenitor-like phenotype, with a sparse and open chromatin structure. Our findings indicate that 5-aza-CR induced somatic cell transition to a higher plasticity state is activated by multiple regulations that accompany the demethylating effect exerted by the modifier

    Mountain high and valley deep: epigenetic controls of pluripotency and cell fate

    Get PDF
    All the somatic cells composing a mammalian organism are genetically identical and contain the same DNA sequence. Nevertheless, they are able to adopt a distinct commitment, differentiate in a tissue specific way and respond to developmental cues, acquiring a terminal phenotype. At the end of the differentiation process, each cell is highly specialized and committed to a distinct determined fate. This is possible thanks to tissue-specific gene expression, timely regulated by epigenetic modifications, that gradually limit cell potency to a more restricted phenotype-related expression pattern. Complex chemical modifications of DNA, RNA and associated proteins, that determine activation or silencing of certain genes are responsible for the 'epigenetic control' that triggers the restriction of cell pluripotency, with the acquisition of the phenotypic definition and the preservation of its stability during subsequent cell divisions. The process is however reversible and may be modified by biochemical and biological manipulation, leading to the reactivation of hypermethylated pluripotency genes and inducing cells to transit from a terminally committed state to a higher plasticity one. These epigenetic regulatory mechanisms play a key role in embryonic development since they drive phenotype definition and tissue differentiation. At the same time, they are crucial for a better understanding of pluripotency regulation and restriction, stem cell biology and tissue repair process

    The quest for an effective and safe personalized cell therapy using epigenetic tools

    Get PDF
    In the presence of different environmental cues that are able to trigger specific responses, a given genotype has the ability to originate a variety of different phenotypes. This property is defined as plasticity and allows cell fate definition and tissue specialization. Fundamental epigenetic mechanisms drive these modifications in gene expression and include DNA methylation, histone modifications, chromatin remodeling, and microRNAs. Understanding these mechanisms can provide powerful tools to switch cell phenotype and implement cell therapy. Environmentally influenced epigenetic changes have also been associated to many diseases such as cancer and neurodegenerative disorders, with patients that do not respond, or only poorly respond, to conventional therapy. It is clear that disorders based on an individual\u2019s personal genomic/epigenomic profile can rarely be successfully treated with standard therapies due to genetic heterogeneity and epigenetic alterations and a personalized medicine approach is far more appropriate to manage these patients. We here discuss the recent advances in small molecule approaches for personalized medicine, drug targeting, and generation of new cells for medical application. We also provide prospective views of the possibility to directly convert one cell type into another, in a safe and robust way, for cell-based clinical trials and regenerative medicine

    Use of a micro-bioreactor to promote 3-dimensional cell rearrangement and induce, maintain, and stabilize high plasticity in epigenetically erased fibroblasts

    Get PDF
    Development and cell differentiation are driven by complex epigenetic mechanisms that regulate chromatin structure and specific gene transcription programs. We recently demonstrated that it is possible to modify the epigenetic signature of terminally differentiated cells, switching their phenotype into one of higher plasticity, through the use of molecules that remove epigenetic marks from DNA and histones (Pennarossa et al. 2013 Proc. Natl. Acad. Sci. 110, 8948-8953; Brevini et al. 2014 Stem Cell Rev. 10, 633-642). Here we drive mammalian fibroblasts into a high plasticity state using the epigenetic eraser, 5-aza-cytidine (5-aza-CR), and investigate whether the simultaneous use of a micro-bioreactor culture system is able to promote three-dimensional (3D) cell rearrangement, boost the induction of high plasticity, and stably maintain it. To this purpose, fibroblasts were either plated on plastic dishes (Group A) or encapsulated in a liquid marble micro-bioreactor (polytetrafluoroethylene powder; Sigma 430935, St. Louis, MO; Group B). Both groups were erased with 5-aza-CR and cultured in embryonic stem cell medium for 28 days. Morphological analysis was carried out for the entire length of the experiment. The OCT4, NANOG, and REX1 expression levels were assessed by real-time PCR at different time points. Exposure to 5-aza-CR induced a dramatic change in morphology in Group A fibroblasts. Cells became rounded, with larger and granulated nuclei and retained a monolayer distribution for the entire length of the experiment. The same changes in cell and nuclear morphology were observed also in cells encapsulated in liquid marble (Group B). In addition, these cells formed 3D spherical structures that were stably maintained until Day 28. These morphological rearrangements were accompanied by the active expression of the pluripotency markers, OCT4, NANOG, and REX1, in both groups. However, while Group A cells progressively down-regulated their expression by Day 6, Group B cells steadily transcribed these genes until Day 28, when cultures were arrested. Altogether, the data confirm that epigenetic erasing induces a high plasticity state in terminally differentiated fibroblasts with the expression of pluripotency related genes. Striking morphological changes accompanied the removal of epigenetic marks. These were influenced by the use of an adequate 3D in vitro culture system, with the induction of distinctive cell rearrangements and the formation of spherical structures that boosted and maintained cell plasticity. These results suggest a correlation between the mechanotransduction pathways induced by the micro-bioreactor culture system and the epigenetic regulation of cell phenotype

    Large animal models for cardiac stem cell therapies

    Get PDF
    Cardiovascular disease is the leading cause of death in developed countries and is one of the leading causes of disease burden in developing countries. Therapies have markedly increased survival in several categories of patients, nonetheless mortality still remains high. For this reason high hopes are associated with recent developments in stem cell biology and regenerative medicine that promise to replace damaged or lost cardiac muscle with healthy tissue, and thus to dramatically improve the quality of life and survival in patients with various cardiomyopathies. Much of our insight into the molecular and cellular basis of cardiovascular biology comes from small animal models, particularly mice. However, signi\ufb01cant differences exist with regard to several cardiac characteristics when mice are compared with humans. For this reason, large animal models like dog, sheep and pig have a well established role in cardiac research. A distinct characteristic of cardiac stem cells is that they can either be endogenous or derive from outside the heart itself; they can originate as the natural course of their differentiation programme (e.g., embryonic stem cells) or can be the result of speci\ufb01c inductive conditions (e.g., mesenchymal stem cells). In this review we will summarize the current knowledge on the kind of heart-related stem cells currently available in large animal species and their relevance to human studies as pre-clinical models
    • …
    corecore