23,637 research outputs found
The world-sheet corrections to dyons in the Heterotic theory
All the linear alpha-prime corrections, however excluding the gravitational
Chern-Simons correction, are studied in the toroidally compactified critical
Heterotic string theory. These corrections are computed to the entropy for a
BPS static spherical four dimensional dyonic black hole which represents a
wrapped fundamental string carrying arbitrary winding and momentum charges
along one cycle in the presence of KK-monopole and H-monopole charges
associated to another cycle. It is verified that after the inclusion of the
gravitational Chern-Simons corrections [hep-th/0608182], all the linear
alpha-prime corrections to the entropy for the supersymmetric dyon can be
reproduced by the inclusion of only the Gauss-Bonnet Lagrangian to the
supergravity approximation of the induced Lagrangian.Comment: JHEP style, 17 Pages; v2: a typo corrected ; v3: The coupling of the
gravitational Chern-Simons terms to the three form field strength taken into
account. The conclusion correcte
Partition functions and elliptic genera from supergravity
We develop the spacetime aspects of the computation of partition functions
for string/M-theory on AdS(3) xM. Subleading corrections to the semi-classical
result are included systematically, laying the groundwork for comparison with
CFT partition functions via the AdS(3)/CFT(2) correspondence. This leads to a
better understanding of the "Farey tail" expansion of Dijkgraaf et. al. from
the point of view of bulk physics. Besides clarifying various issues, we also
extend the analysis to the N=2 setting with higher derivative effects included.Comment: 34 page
Instanton Corrected Non-Supersymmetric Attractors
We discuss non-supersymmetric attractors with an instanton correction in Type
IIA string theory compactified on a Calabi-Yau three-fold at large volume. For
a stable non-supersymmetric black hole, the attractor point must minimize the
effective black hole potential. We study the supersymmetric as well as
non-supersymmetric attractors for the D0-D4 system with instanton corrections.
We show that in simple models, like the STU model, the flat directions of the
mass matrix can be lifted by a suitable choice of the instanton parameters.Comment: Minor modifications, Corrected typos, 38 pages, 1 figur
Black hole entropy functions and attractor equations
The entropy and the attractor equations for static extremal black hole
solutions follow from a variational principle based on an entropy function. In
the general case such an entropy function can be derived from the reduced
action evaluated in a near-horizon geometry. BPS black holes constitute special
solutions of this variational principle, but they can also be derived directly
from a different entropy function based on supersymmetry enhancement at the
horizon. Both functions are consistent with electric/magnetic duality and for
BPS black holes their corresponding OSV-type integrals give identical results
at the semi-classical level. We clarify the relation between the two entropy
functions and the corresponding attractor equations for N=2 supergravity
theories with higher-derivative couplings in four space-time dimensions. We
discuss how non-holomorphic corrections will modify these entropy functions.Comment: 21 pages,LaTeX,minor change
Análise de sistemas de produção animal - bases conceituais.
De maneira geral a utilização do enfoque sistêmico é um assunto muito falado, pouco entendido e muito pouco utilizado. Entretanto, pressões, especialmente, do mercado, exigindo maior eficiência nas diferentes atividades da agropecuária, tem contribuído para a maior utilização do método e a maior procura por informação técnica sobre o assunto nas diferentes áreas do conhecimento. Todavia existe necessidade de intensificar a difusão dos conceitos e das ferramentas que são utilizadas para implantar o enfoque de sistemas nas atividades técnicas, com objetivo de caracterizar os sistemas de produção e de verificar qual a forma de torná-los mais eficientes.bitstream/CPAP/55968/1/DOC79.pdfFormato Eletrônic
Entropy Function for Heterotic Black Holes
We use the entropy function formalism to study the effect of the Gauss-Bonnet
term on the entropy of spherically symmetric extremal black holes in heterotic
string theory in four dimensions. Surprisingly the resulting entropy and the
near horizon metric, gauge field strengths and the axion-dilaton field are
identical to those obtained by Cardoso et. al. for a supersymmetric version of
the theory that contains Weyl tensor squared term instead of the Gauss-Bonnet
term. We also study the effect of holomorphic anomaly on the entropy using our
formalism. Again the resulting attractor equations for the axion-dilaton field
and the black hole entropy agree with the corresponding equations for the
supersymmetric version of the theory. These results suggest that there might be
a simpler description of supergravity with curvature squared terms in which we
supersymmetrize the Gauss-Bonnet term instead of the Weyl tensor squared term.Comment: LaTeX file, 23 pages; v2: references added; v3: minor addition; v4:
minor change
- …