1,360 research outputs found

    Experimental manifestation of the breakpoint region in the current-voltage characteristics of intrinsic Josephson junctions

    Full text link
    The experimental evidence of the breakpoint on the current-voltage characteristics (IVCs) of the stacks of intrinsic Josephson junctions (IJJs) is presented. The influence of the capacitive coupling on the IVCs of Bi2_2Sr2_2CaCu2_2Oy_y IJJs has been investigated. At 4.2 K, clear breakpoint region is observed on the branches in the IVCs. It is found that the hysteresis observed on the IVC is suppressed due to the coupling compared with that expected from the McCumber parameter. Measurements agree well with the results obtained by the theoretical model.Comment: 3 pages, 4 figure

    Discovery of the VHE gamma-ray source HESS J1641-463

    Full text link
    A new TeV source, HESS J1641-463, has been serendipitously discovered in the Galactic plane by the High Energy Stereoscopic System (H.E.S.S.) at a significance level of 8.6 standard deviations. The observations of HESS J1641-463 were performed between 2004 and 2011 and the source has a moderate flux level of 1.7% of the Crab Nebula flux at E > 1 TeV. HESS J1641-463 has a rather hard photon index of 1.99 +- 0.13_stat +- 0.20_sys. HESS J1641-463 is positionally coincident with the radio supernova remnant SNR G338.5+0.1, but no clear X-ray counterpart has been found in archival Chandra observations of the region. Different possible VHE production scenarios will be discussed in this contribution.Comment: 5 pages, 5 figures, 2012 Fermi Symposium proceedings - eConf C12102

    Advances in targeted Alpha therapy for prostate cancer

    Get PDF
    BACKGROUND: Amongst therapeutic radiopharmaceuticals, targeted alpha therapy (TĪ±T) can deliver potent and local radiation selectively to cancer cells as well as the tumor microenvironment and thereby control cancer while minimizing toxicity. DESIGN: In this review, we discuss the history, progress, and future potential of TĪ±T in the treatment of prostate cancer, including dosimetry-individualized treatment planning, combinations with small-molecule therapies, and conjugation to molecules directed against antigens expressed by prostate cancer cells, such as prostate-specific membrane antigen (PSMA) or components of the tumor microenvironment. RESULTS: A clinical proof of concept that TĪ±T is efficacious in treating bone-metastatic castration-resistant prostate cancer has been demonstrated by radium-223 via improved overall survival and long-term safety/tolerability in the phase III ALSYMPCA trial. Dosimetry calculation and pharmacokinetic measurements of TĪ±T provide the potential for optimization and individualized treatment planning for a precision medicine-based cancer management paradigm. The ability to combine TĪ±Ts with other agents, including chemotherapy, androgen receptor (AR)-targeting agents, DNA repair inhibitors, and immuno-oncology agents, is under investigation. Currently, TĪ±Ts that specifically target prostate cancer cells expressing PSMA represents a promising therapeutic approach. Both PSMA-targeted actinium-225 and thorium-227 conjugates are under investigation. CONCLUSIONS: The described clinical benefit, safety and tolerability of radium-223 and the recent progress in TĪ±T trial development suggest that TĪ±T occupies an important new role in prostate cancer treatment. Ongoing studies with newer dosimetry methods, PSMA targeting, and novel approaches to combination therapies should expand the utility of TĪ±T in prostate cancer treatment

    Deformation of Equilibrium Shape of a Vesicle Induced by Injected Flexible Polymers

    Full text link
    Using field theoretic approach, we study equilibrium shape deformation of a vesicle induced by the presence of enclosed flexible polymers, which is a simple model of drug delivery system or endocytosis. To evaluate the total free energy of this system, it is necessary to calculate the bending elastic energy of the membrane, the conformation entropy of the polymers and their interactions. For this purpose, we combine phase field theory for the membrane and self-consistent field theory for the polymers. Simulations on this coupled model system for axiosymmetric shapes show a shape deformation of the vesicle induced by introducing polymers into it. We examined the dependence of the stability of the vesicle shape on the chain length of the polymers and the packing ratio of the vesicle. We present a simple model calculation that shows the relative stability of the prolate shape compared to the oblate shape.Comment: 5 pages, 3 figure

    Comparison of spinal cord stimulation profiles from intra- and extradural electrode arrangements by finite element modelling

    No full text
    Spinal cord stimulation currently relies on extradural electrode arrays that are separated from the spinal cord surface by a highly conducting layer of cerebrospinal fluid. It has recently been suggested that intradural placement of the electrodes in direct contact with the pial surface could greatly enhance the specificity and efficiency of stimulation. The present computational study aims at quantifying and comparing the electrical current distributions as well as the spatial recruitment profiles resulting from extra- and intra-dural electrode arrangements. The electrical potential distribution is calculated using a 3D finite element model of the human thoracic spinal canal. The likely recruitment areas are then obtained using the potential as input to an equivalent circuit model of the pre-threshold axonal response. The results show that the current threshold to recruitment of axons in the dorsal column is more than an order of magnitude smaller for intradural than extradural stimulation. Intradural placement of the electrodes also leads to much higher contrast between the stimulation thresholds for the dorsal root entry zone and the dorsal column, allowing better focusing of the stimulus

    First-Principles Study for the Anisotropy of Iron-based Superconductors toward Power and Device Applications

    Full text link
    Performing the first-principles calculations, we investigate the anisotropy in the superconducting state of iron-based superconductors to gain an insight into their potential applications. The anisotropy ratio Ī³Ī»\gamma_\lambda of the c-axis penetration depth to the ab-plane one is relatively small in BaFe2As2 and LiFeAs, i.e., Ī³Ī»āˆ¼3\gamma_\lambda \sim 3, indicating that the transport applications are promising in these superconductors. On the other hand, in those having perovskite type blocking layers such as Sr2ScFePO3 we find a very large value, Ī³Ī»āˆ¼200\gamma_\lambda \sim 200, comparable to that in strongly anisotropic high-Tc cuprate Bi2Sr2CaCu2O{8-\delta}. Thus, the intrinsic Josephson junction stacks are expected to be formed along the c-axis, and novel Josephson effects due to the multi-gap nature are also suggested in these superconductors.Comment: 5 pages, 4 figure
    • ā€¦
    corecore