2 research outputs found

    Prediction of mango eating quality at harvest using short-wave near infrared spectrometry

    No full text
    Short wave near infrared (SWNIR) (400–1100 nm) spectroscopy was trialled in assessment of mango (Mangifera indica L.) fruit maturation and as a harvest time guide to final eating quality. Fruit maturity was indexed in terms of flesh colour (r2 = 0.79 for Hunter b value against maturity score), dry matter content (r2 = 0.66 for % DM against maturity score) and a visual ranking of maturity. Fruit eating quality at fully ripe stage was indexed in terms of total soluble solids content of extracted juice (TSS). Partial least squares (PLS) regression models based on second derivative of absorbance spectra for DM, TSS, Hunter b and visual maturity ranking were optimised in terms of the wavelength range of SWNIR. Optimal TSS and DM models used the same wavelength region and also produced similar PLS regression coefficient plots, suggesting that the models are unable to differentiate between the soluble and insoluble forms of carbohydrate in the fruit. When used in prediction of new populations, DM and Hunter b models based on several harvest dates were acceptable (e.g. for DM, = 0.74, bias = 1, bias corrected root mean square error of prediction [SEP] = 1% DM). Calibration models on TSS of ripe fruit, developed using SWNIR spectra collected (non-destructively) of hard green mango ( = 0.90), were useful in prediction of an independent population ( = 0.92 with SEP = 0.67 and bias = 1.25% TSS). We conclude that the SWNIR technique can be used at fruit harvest in assessment of fruit maturity (as flesh Hunter b or % DM), and also in prediction of the future TSS of fruit after ripening

    Report of a Delphi exercise to inform the design of a research programme on screening for thoracic aortic disease

    No full text
    Objectives: To inform the design of a clinical trial of a targeted screening programme for relatives of individuals affected by thoracic aortic disease, we performed a consensus exercise as to the acceptability of screening, the optimal sequence and choice of tests, long-term patient management, and choice of trial design. Methods: Working with the Aortic Dissection Awareness UK & Ireland patient association, we performed a Delphi exercise with clinical experts, patients, and carers, consisting of three rounds of consultation followed by a final multi-stakeholder face-to-face workshop. Results: Thirty-five experts and 84 members of the public took part in the surveys, with 164 patients and clinicians attending the final workshop. There was substantial agreement on the need for a targeted screening pathway that would employ a combined approach (imaging + genetic testing). The target population would include the first- and second-degree adult (> 15 years) relatives, with no upper age limit of affected patients. Disagreement persisted about the screening process, sequence, personnel, the imaging method to adopt, computed tomography (CT) scan vs magnetic resonance imaging (MRI), and the specifics of a potential trial, including willingness to undergo randomisation, and measures of effectiveness and acceptability. Conclusion: A Delphi process, initiated by patients, identified areas of uncertainty with respect to behaviour, process, and the design of a targeted screening programme for thoracic aortic disease that requires further research prior to any future trial
    corecore