243 research outputs found
Recommended from our members
Extracting Semantics of Individual Places from Movement Data by Analyzing Temporal Patterns of Visits
Data reflecting movements of people, such as GPS or GSM tracks, can be a source of information about mobility behaviors and activities of people. Such information is required for various kinds of spatial planning in the public and business sectors. Movement data by themselves are semantically poor. Meaningful information can be derived by means of interactive visual analysis performed by a human expert; however, this is only possible for data about a small number of people. We suggest an approach that allows scaling to large datasets reflecting movements of numerous people. It includes extracting stops, clustering them for identifying personal places of interest (POIs), and creating temporal signatures of the POIs characterizing the temporal distribution of the stops with respect to the daily and weekly time cycles and the time line. The analyst can give meanings to selected POIs based on their temporal signatures (i.e., classify them as home, work, etc.), and then POIs with similar signatures can be classified automatically. We demonstrate the possibilities for interactive visual semantic analysis by example of GSM, GPS, and Twitter data. GPS data allow inferring richer semantic information, but temporal signatures alone may be insufficient for interpreting short stops. Twitter data are similar to GSM data but additionally contain message texts, which can help in place interpretation. We plan to develop an intelligent system that learns how to classify personal places and trips while a human analyst visually analyzes and semantically annotates selected subsets of movement data
Mapping and the Citizen Sensor
Maps are a fundamental resource in a diverse array of applications ranging from everyday activities, such as route planning through the legal demarcation of space to scientific studies, such as those seeking to understand biodiversity and inform the design of nature reserves for species conservation. For a map to have value, it should provide an accurate and timely representation of the phenomenon depicted and this can be a challenge in a dynamic world. Fortunately, mapping activities have benefitted greatly from recent advances in geoinformation technologies. Satellite remote sensing, for example, now offers unparalleled data acquisition and authoritative mapping agencies have developed systems for the routine production of maps in accordance with strict standards. Until recently, much mapping activity was in the exclusive realm of authoritative agencies but technological development has also allowed the rise of the amateur mapping community. The proliferation of inexpensive and highly mobile and location aware devices together with Web 2.0 technology have fostered the emergence of the citizen as a source of data. Mapping presently benefits from vast amounts of spatial data as well as people able to provide observations of geographic phenomena, which can inform map production, revision and evaluation. The great potential of these developments is, however, often limited by concerns. The latter span issues from the nature of the citizens through the way data are collected and shared to the quality and trustworthiness of the data. This book reports on some of the key issues connected with the use of citizen sensors in mapping. It arises from a European Co-operation in Science and Technology (COST) Action, which explored issues linked to topics ranging from citizen motivation, data acquisition, data quality and the use of citizen derived data in the production of maps that rival, and sometimes surpass, maps arising from authoritative agencies
An edge-queued datagram service for all datacenter traffic
Modern datacenters support a wide range of protocols and in-network switch enhancements aimed at improving performance. Unfortunately, the resulting protocols often do not coexist gracefully because they inevitably interact via queuing in the network. In this paper we describe EQDS, a new datagram service for datacenters that moves almost all of the queuing out of the core network and into the sending host. This enables it to support multiple (conflicting) higher layer protocols, while only sending packets into the network according to any receiver-driven credit scheme. EQDS can transparently speed up legacy TCP and RDMA stacks, and enables transport protocol evolution, while benefiting from future switch enhancements without needing to modify higher layer stacks. We show through simulation and multiple implementations that EQDS can reduce FCT of legacy TCP by 2x, improve the NVMeOF-RDMA throughput by 30%, and safely run TCP alongside RDMA on the same network
A Decentralized Recommender System for Effective Web Credibility Assessment
An overwhelming and growing amount of data is available online. The problem of untrustworthy online information is augmented by its high economic potential and its dynamic nature, e.g. transient domain names, dynamic content, etc. In this paper, we address the problem of assessing the credibility of web pages by a decentralized social recommender system. Specifically, we concurrently employ i) item-based collaborative filtering (CF) based on specific web page features, ii) user-based CF based on friend ratings and iii) the ranking of the page in search results. These factors are appropriately combined into a single assessment based on adaptive weights that depend on their effectiveness for different topics and different fractions of malicious ratings. Simulation experiments with real traces of web page credibility evaluations suggest that our hybrid approach outperforms both its constituent components and classical content-based classification approaches
Earliest Query Answering for Deterministic Nested Word Automata
International audienceEarliest query answering (EQA) is an objective of many recent streaming algorithms for XML query answering, that aim for close to optimal memory management. In this paper, we show that EQA is infeasible even for a small fragment of Forward XPath except if P=NP. We then present an EQA algorithm for queries and schemas defined by deterministic nested word automata (dNWAs) and distinguish a large class of dNWAs for which streaming query answering is feasible in polynomial space and time
- …