39 research outputs found
Lights, Camera, Action! Exploring Effects of Visual Distractions on Completion of Security Tasks
Human errors in performing security-critical tasks are typically blamed on
the complexity of those tasks. However, such errors can also occur because of
(possibly unexpected) sensory distractions. A sensory distraction that produces
negative effects can be abused by the adversary that controls the environment.
Meanwhile, a distraction with positive effects can be artificially introduced
to improve user performance.
The goal of this work is to explore the effects of visual stimuli on the
performance of security-critical tasks. To this end, we experimented with a
large number of subjects who were exposed to a range of unexpected visual
stimuli while attempting to perform Bluetooth Pairing. Our results clearly
demonstrate substantially increased task completion times and markedly lower
task success rates. These negative effects are noteworthy, especially, when
contrasted with prior results on audio distractions which had positive effects
on performance of similar tasks. Experiments were conducted in a novel (fully
automated and completely unattended) experimental environment. This yielded
more uniform experiments, better scalability and significantly lower financial
and logistical burdens. We discuss this experience, including benefits and
limitations of the unattended automated experiment paradigm
Brain tumour differentiation: rapid stratified serum diagnostics via attenuated total reflection Fourier-transform infrared spectroscopy
The ability to diagnose cancer rapidly with high sensitivity and specificity is essential to exploit advances in new treatments to lead significant reductions in mortality and morbidity. Current cancer diagnostic tests observing tissue architecture and specific protein expression for specific cancers suffer from inter-observer variability, poor detection rates and occur when the patient is symptomatic. A new method for the detection of cancer using 1 μl of human serum, attenuated total reflection - Fourier transform infrared spectroscopy and pattern recognition algorithms is reported using a 433 patient dataset (3897 spectra). To the best of our knowledge, we present the largest study on serum mid-infrared spectroscopy for cancer research. We achieve optimum sensitivities and specificities using a Radial Basis Function Support Vector Machine of between 80.0 and 100% for all strata and identify the major spectral features, hence biochemical components, responsible for the discrimination within each stratum. We assess feature fed-SVM analysis for our cancer versus non-cancer model and achieve 91.5 and 83.0% sensitivity and specificity respectively. We demonstrate the use of infrared light to provide a spectral signature from human serum to detect, for the first time, cancer versus non-cancer, metastatic cancer versus organ confined, brain cancer severity and the organ of origin of metastatic disease from the same sample enabling stratified diagnostics depending upon the clinical question asked. © 2016, The Author(s)
Phospholipid bound to the flavohemoprotein from Alcaligenes eutrophus
The structurally characterized flavohemoprotein from Alcaligenes eutrophus (FHP) contains a phospholipid-binding site with 1-16 : 0-2-cyclo-17 : 0-diacyl-glycerophospho-ethanolamine and 1-16 : 0-2-cyclo-17 : 0-diacyl-glycerophospho-glycerol as the major occupying compounds. The structure of the phospholipid is characterized by its compact form, due to the -sc/beta/-sc conformation of the glycerol and the nonlinear arrangement of the sn-1- and sn-2-fatty acid chains. The phospholipid-binding site is located adjacent to the heme molecule at the bottom of a large cavity. The fatty acid chains form a large number of van der Waal's contacts with nonpolar side chains, whereas the glycerophosphate moiety, which points towards the entrance of the channel, is linked to the protein matrix by polar interactions. The thermodynamically stable globin module of FHP, obtained after cleaving off the oxidoreductase module, also contains the phospholipid and can therefore be considered as a phospholipid-binding protein. Single amino acid exchanges designed to decrease the lipid-binding site revealed both the possibility of blocking incorporation of the phospholipid and its capability to evade steric barriers. Conformational changes in the phospholipid can also be induced by binding heme-ligating compounds. Phospholipid binding is not a general feature of flavohemoproteins, because the Escherichia coli and the yeast protein exhibit less and no lipid affinity, respectively
Recent inorganic carbon increase in a temperate estuary driven by water quality improvement and enhanced by droughts
Estuaries are an important contributor to the global carbon budget, facilitating carbon removal, transfer, and transformation between land and the coastal ocean. Estuaries are susceptible to global climate change and anthropogenic perturbations. We find that a long-term significant mid-estuary increase in dissolved inorganic carbon (DIC) of 6–21 µmol kg−1 yr−1 (1997–2020) in a temperate estuary in Germany (Elbe Estuary) was driven by an increase in upper-estuary particulate organic carbon (POC) content of 8–14 µmol kg−1 yr−1. The temporal POC increase was due to an overall improvement in water quality observed in the form of high rates of primary production and a significant drop in biological oxygen demand. The magnitude of mid-estuary DIC gain was equivalent to the increased POC production in the upper estuary, suggesting that POC is effectively remineralized and retained as DIC in the mid-estuary, with the estuary acting as an efficient natural filter for POC. In the context of this significant long-term DIC increase, a recent extended drought period (2014–2020) significantly lowered the annual mean river discharge (468 ± 234 m3 s−1) compared to the long-term mean (690 ± 441 m3 s−1, 1960–2020), while the late spring internal DIC load in the estuary doubled. The drought induced a longer dry season, starting in May (earlier than normal), increased the residence time in the estuary and allowed for a more complete remineralization period of POC. Annually, 77 %–94 % of the total DIC export was laterally transported to the coastal waters, reaching 89 ± 4.8 Gmol C yr−1, and thus, between 1997 and 2020, only an estimated maximum of 23 % (10 Gmol C yr−1) was released via carbon dioxide (CO2) evasion. Export of DIC to coastal waters decreased significantly during the drought, on average by 24 % (2014–2020: 38 ± 5.4 Gmol C yr−1), compared to the non-drought period. In contrast, there was no change in the water–air CO2 flux during the drought. We have identified that seasonal changes in DIC processing in an estuary require consideration when estimating both the long-term and future changes in water–air CO2 flux and DIC export to coastal waters. Regional and global carbon budgets should therefore take into account carbon cycling estimates in estuaries, as well as their changes over time in relation to impacts of water quality changes and extreme hydrological events
Preliminary electrochemical studies of the flavohaemoprotein from Ralstonia eutropha entrapped in a film of methyl cellulose: activation of the reduction of dioxygen
A flavohaemoprotein (FHP) from Ralstonia eutropha, obtained in a pure and active form, has been entrapped in a film of methyl cellulose on the electrode surface and gives a stable and reproducible electrochemical response at pH 7.00 when subject to cyclic voltammetry using a glassy carbon electrode. To our knowledge, no previous direct electrochemistry had been achieved with a bacterial flavohaemoglobin, which possess both a FAD and a haem. A single couple is observed which is assigned to the haem moiety of the protein, since the same result is obtained with a semi-apo form of the protein deprived of FAD (semi-apo FHP). The data collected were further confirmed by potentiometry with a platinum electrode, and the homogeneous electron transfer rate estimated by double potential step chronocoulometry at a bare glassy carbon electrode in the presence of methyl viologen (MV). The presence of FAD in the holoprotein is easily confirmed by UV–Vis spectrophotometry, but its expected electron relay role remains elusive. The protein activates the reduction of dioxygen by about 400 mV, the reduction current being proportional to the concentration of dioxygen up to 10% in volume in the gas mixture
Significant shifts in inorganic carbon and ecosystem state in a temperate estuary (1985–2018)
Estuaries regulate carbon cycling along the land-ocean continuum and thus influence carbon export to the ocean, and global carbon budgets. The Elbe Estuary in Germany has been altered by large anthropogenic perturbations, such as widespread heavy metal pollution, minimally treated wastewater before the 1980s, establishment of wastewater treatment plants after the 1990s, and an overall nutrient and pollutant load reduction in the last three decades. Based on an extensive evaluation of key ecosystem variables, and an analysis of the available inorganic and organic carbon records, this study has identified three ecosystem states in recent history: the polluted (1985–1990), transitional (1991–1996), and recovery (1997–2018) states. The polluted state was characterized by very high dissolved inorganic carbon (DIC) and ammonium concentrations, toxic heavy metal levels, dissolved oxygen undersaturation, and low pH. During the transitional state, heavy metal pollution decreased by > 50%, and primary production re-established in spring to summer, with weak seasonality in DIC. Since 1997, during the recovery state, DIC seasonality was driven by primary production, and DIC significantly increased by > 23 μmol L−1 yr−1 in the mid to lower estuary, indicating that, along with the improvement in water quality the ecosystem state is still changing. Large anthropogenic perturbations can therefore alter estuarine ecosystems (on the order of decades), as well as induce large and complex biogeochemical shifts and significant changes to carbon cycling