85 research outputs found
Heavy quarks in a magnetic field
The motion of a heavy charged quark in a magnetic field is analyzed in the
vacuum of strongly coupled CFT. The motion of the quark is dissipative. It
moves in spiral until it eventually comes to rest. The world-sheet geometry is
locally AdS_2 but has a time dependent horizon. The string profile in the
static gauge extends from the boundary till a point where an embedding
singularity exists. Connections with other circular string motions are
established.Comment: (v3) Misprints corrected, discussion on moving horizons improved and
enhance
Quantum Hall Effect in a Holographic Model
We consider a holographic description of a system of strongly coupled
fermions in 2+1 dimensions based on a D7-brane probe in the background of
D3-branes, and construct stable embeddings by turning on worldvolume fluxes. We
study the system at finite temperature and charge density, and in the presence
of a background magnetic field. We show that Minkowski-like embeddings that
terminate above the horizon describe a family of quantum Hall states with
filling fractions that are parameterized by a single discrete parameter. The
quantization of the Hall conductivity is a direct consequence of the
topological quantization of the fluxes. When the magnetic field is varied
relative to the charge density away from these discrete filling fractions, the
embeddings deform continuously into black-hole-like embeddings that enter the
horizon and that describe metallic states. We also study the thermodynamics of
this system and show that there is a first order phase transition at a critical
temperature from the quantum Hall state to the metallic state.Comment: v2: 27 pages, 12 figures. There is a major revision in the
quantitative analysis. The qualitative results and conclusions are unchanged,
with one exception: we show that the quantum Hall state embeddings, which
exist for discrete values of the filling fraction, deform continuously into
metallic state embeddings away from these filling fraction
Generalized Holographic Quantum Criticality at Finite Density
We show that the near-extremal solutions of Einstein-Maxwell-Dilaton
theories, studied in ArXiv:1005.4690, provide IR quantum critical geometries,
by embedding classes of them in higher-dimensional AdS and Lifshitz solutions.
This explains the scaling of their thermodynamic functions and their IR
transport coefficients, the nature of their spectra, the Gubser bound, and
regulates their singularities. We propose that these are the most general
quantum critical IR asymptotics at finite density of EMD theories.Comment: v4: Corrected the scaling equation for the conductivity in section
9.
Sum rules, plasma frequencies and Hall phenomenology in holographic plasmas
We study the AC optical and hall conductivities of Dp/Dq-branes intersections
in the probe approximation and use sum-rules to study various associated
transport coefficients. We determine that the presence of massive fundamental
matter, as compared to massless fundamental matter described holographically by
a theory with no dimensional defects, reduces the plasma frequency. We further
show that this is not the case when the brane intersections include defects. We
discuss in detail how to implement correctly the regularization of retarded
Green's functions so that the dispersion relations are satisfied and the low
energy behaviour of the system is physically realistic.Comment: 25 pages, 5 figures. v2.minor changes, published versio
Zero Sound in Strange Metallic Holography
One way to model the strange metal phase of certain materials is via a
holographic description in terms of probe D-branes in a Lifshitz spacetime,
characterised by a dynamical exponent z. The background geometry is dual to a
strongly-interacting quantum critical theory while the probe D-branes are dual
to a finite density of charge carriers that can exhibit the characteristic
properties of strange metals. We compute holographically the low-frequency and
low-momentum form of the charge density and current retarded Green's functions
in these systems for massless charge carriers. The results reveal a
quasi-particle excitation when z<2, which in analogy with Landau Fermi liquids
we call zero sound. The real part of the dispersion relation depends on
momentum k linearly, while the imaginary part goes as k^2/z. When z is greater
than or equal to 2 the zero sound is not a well-defined quasi-particle. We also
compute the frequency-dependent conductivity in arbitrary spacetime dimensions.
Using that as a measure of the charge current spectral function, we find that
the zero sound appears only when the spectral function consists of a single
delta function at zero frequency.Comment: 20 pages, v2 minor corrections, extended discussion in sections 5 and
6, added one footnote and four references, version published in JHE
Zero Sound in Effective Holographic Theories
We investigate zero sound in -dimensional effective holographic theories,
whose action is given by Einstein-Maxwell-Dilaton terms. The bulk spacetimes
include both zero temperature backgrounds with anisotropic scaling symmetry and
their near-extremal counterparts obtained in 1006.2124 [hep-th], while the
massless charge carriers are described by probe D-branes. We discuss
thermodynamics of the probe D-branes analytically. In particular, we clarify
the conditions under which the specific heat is linear in the temperature,
which is a characteristic feature of Fermi liquids. We also compute the
retarded Green's functions in the limit of low frequency and low momentum and
find quasi-particle excitations in certain regime of the parameters. The
retarded Green's functions are plotted at specific values of parameters in
, where the specific heat is linear in the temperature and the
quasi-particle excitation exists. We also calculate the AC conductivity in
-dimensions as a by-product.Comment: 29 pages, 1 figur
Chiral Symmetry Breaking and External Fields in the Kuperstein-Sonnenschein Model
A novel holographic model of chiral symmetry breaking has been proposed by
Kuperstein and Sonnenschein by embedding non-supersymmetric probe D7 and
anti-D7 branes in the Klebanov-Witten background. We study the dynamics of the
probe flavours in this model in the presence of finite temperature and a
constant electromagnetic field. In keeping with the weakly coupled field theory
intuition, we find the magnetic field promotes spontaneous breaking of chiral
symmetry whereas the electric field restores it. The former effect is
universally known as the "magnetic catalysis" in chiral symmetry breaking. In
the presence of an electric field such a condensation is inhibited and a
current flows. Thus we are faced with a steady-state situation rather than a
system in equilibrium. We conjecture a definition of thermodynamic free energy
for this steady-state phase and using this proposal we study the detailed phase
structure when both electric and magnetic fields are present in two
representative configurations: mutually perpendicular and parallel.Comment: 50 pages, multiple figures, minor typo fixed, references adde
Collective Excitations of Holographic Quantum Liquids in a Magnetic Field
We use holography to study N=4 supersymmetric SU(Nc) Yang-Mills theory in the
large-Nc and large-coupling limits coupled to a number Nf << Nc of
(n+1)-dimensional massless supersymmetric hypermultiplets in the Nc
representation of SU(Nc), with n=2,3. We introduce a temperature T, a baryon
number chemical potential mu, and a baryon number magnetic field B, and work in
a regime with mu >> T,\sqrt{B}. We study the collective excitations of these
holographic quantum liquids by computing the poles in the retarded Green's
function of the baryon number charge density operator and the associated peaks
in the spectral function. We focus on the evolution of the collective
excitations as we increase the frequency relative to T, i.e. the
hydrodynamic/collisionless crossover. We find that for all B, at low
frequencies the tallest peak in the spectral function is associated with
hydrodynamic charge diffusion. At high frequencies the tallest peak is
associated with a sound mode similar to the zero sound mode in the
collisionless regime of a Landau Fermi liquid. The sound mode has a gap
proportional to B, and as a result for intermediate frequencies and for B
sufficiently large compared to T the spectral function is strongly suppressed.
We find that the hydrodynamic/collisionless crossover occurs at a frequency
that is approximately B-independent.Comment: 45 pages, 8 png and 47 pdf images in 22 figure
Probe Branes, Time-dependent Couplings and Thermalization in AdS/CFT
We present holographic descriptions of thermalization in conformal field
theories using probe D-branes in AdS X S space-times. We find that the induced
metrics on Dp-brane worldvolumes which are rotating in an internal sphere
direction have horizons with characteristic Hawking temperatures even if there
is no black hole in the bulk AdS. The AdS/CFT correspondence applied to such
systems indeed reveals thermal properties such as Brownian motions and AC
conductivities in the dual conformal field theories. We also use this framework
to holographically analyze time-dependent systems undergoing a quantum quench,
where parameters in quantum field theories, such as a mass or a coupling
constant, are suddenly changed. We confirm that this leads to thermal behavior
by demonstrating the formation of apparent horizons in the induced metric after
a certain time.Comment: LaTeX, 47 pages, 14 figures; Typos corrected and references added
(v2); minor corrections, references added(v3
Moduli Spaces of Cold Holographic Matter
We use holography to study (3+1)-dimensional N=4 supersymmetric Yang-Mills
theory with gauge group SU(Nc), in the large-Nc and large-coupling limits,
coupled to a single massless (n+1)-dimensional hypermultiplet in the
fundamental representation of SU(Nc), with n=3,2,1. In particular, we study
zero-temperature states with a nonzero baryon number charge density, which we
call holographic matter. We demonstrate that a moduli space of such states
exists in these theories, specifically a Higgs branch parameterized by the
expectation values of scalar operators bilinear in the hypermultiplet scalars.
At a generic point on the Higgs branch, the R-symmetry and gauge group are
spontaneously broken to subgroups. Our holographic calculation consists of
introducing a single probe Dp-brane into AdS5 times S^5, with p=2n+1=7,5,3,
introducing an electric flux of the Dp-brane worldvolume U(1) gauge field, and
then obtaining explicit solutions for the worldvolume fields dual to the scalar
operators that parameterize the Higgs branch. In all three cases, we can
express these solutions as non-singular self-dual U(1) instantons in a
four-dimensional space with a metric determined by the electric flux. We
speculate on the possibility that the existence of Higgs branches may point the
way to a counting of the microstates producing a nonzero entropy in holographic
matter. Additionally, we speculate on the possible classification of
zero-temperature, nonzero-density states described holographically by probe
D-branes with worldvolume electric flux.Comment: 56 pages, 8 PDF images, 4 figure
- …