554 research outputs found

    War and the Reelection Motive: Examining the Effect of Term Limits

    Full text link
    This article investigates the relationship between term limits and international conflict. Theories of political survival and diversionary war both imply term limits should play a role in international relations, whereas “permanent referendum theory,” largely motivated by work in American politics, suggests otherwise. Drawing on these theories, we formulate and test competing hypotheses regarding term limits and international crises. Using dyadic militarized interstate disputes data and information on forty-eight democracies with term limits, we uncover strong evidence to support the claim that leaders reaching final terms in office are more likely to initiate conflict than those still subject to reelection. Moreover, we find that the likelihood of conflict initiation is significantly higher during times of recession, but only in the absence of binding term limits. While binding electoral terms and economic downturns are both independently associated with increased levels of conflict initiation, in concert their conditional effects actually counteract each other

    Optimal control problems with maximum functional

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76172/1/AIAA-20777-321.pd

    The blue supergiant progenitor of the Supernova Imposter at 2019krl

    Get PDF
    Extensive archival Hubble Space Telescope, Spitzer Space Telescope, and Large Binocular Telescope imaging of the recent intermediate-luminosity transient, AT 2019krl in M74, reveal a bright optical and mid-infrared progenitor star. While the optical peak of the event was missed, a peak was detected in the infrared with an absolute magnitude of M 4.5 μm = -18.4 mag, leading us to infer a visual-wavelength peak absolute magnitude of -13.5 to -14.5. The pre-discovery light curve indicated no outbursts over the previous 16 yr. The colors, magnitudes, and inferred temperatures of the progenitor best match a 13-14 M o˙ yellow or blue supergiant (BSG) if only foreground extinction is taken into account, or a hotter and more massive star if any additional local extinction is included. A pre-eruption spectrum of the star reveals strong Hα and [N ii] emission with wings extending to 2000 km s-1. The post-eruption spectrum is fairly flat and featureless with only Hα, Na i D, [Ca ii], and the Ca ii triplet in emission. As in many previous intermediate-luminosity transients, AT 2019krl shows remarkable observational similarities to luminous blue variable (LBV) giant eruptions, SN 2008S-like events, and massive-star mergers. However, the information about the pre-eruption star favors either a relatively unobscured BSG or a more extinguished LBV with M > 20 Mo˙ likely viewed pole-on.Fil: Andrews, Jennifer E.. University of Arizona; Estados UnidosFil: Jencson, Jacob E.. University of Arizona; Estados UnidosFil: Van Dyk, Schuyler D.. Spitzer Science Center; Estados UnidosFil: Smith, Nathan. University of Arizona; Estados UnidosFil: Neustadt, Jack M. M.. Ohio State University; Estados UnidosFil: Sand, David J.. University of Arizona; Estados UnidosFil: Kreckel, K.. Astronomisches Rechen-institut Heidelberg; AlemaniaFil: Kochanek, C.S.. Ohio State University; Estados UnidosFil: Valenti, S.. University of California at Davis; Estados UnidosFil: Strader, Jay. Michigan State University; Estados UnidosFil: Bersten, Melina Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Blanc, Guillermo A.. Universidad de Chile; ChileFil: Bostroem, K. Azalee. University of California at Davis; Estados UnidosFil: Brink, Thomas G.. University of California at Berkeley; Estados UnidosFil: Emsellem, Eric. European Southern Observatory; AlemaniaFil: Filippenko, Alexei V.. University of California at Berkeley; Estados UnidosFil: Folatelli, Gaston. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Kasliwal, Mansi. California Institute of Technology; Estados UnidosFil: Masci, Frank J.. Spitzer Science Center; Estados UnidosFil: McElroy, Rebecca. The University Of Sydney; AustraliaFil: Milisavljevic, Dan. Purdue University; Estados UnidosFil: Santoro, Francesco. Max Planck Institut für Astronomie; AlemaniaFil: Szalai, Tamás. University of Szeged; Hungrí

    Neurogenomic Evidence for a Shared Mechanism of the Antidepressant Effects of Exercise and Chronic Fluoxetine in Mice

    Get PDF
    Several different interventions improve depressed mood, including medication and environmental factors such as regular physical exercise. The molecular pathways underlying these effects are still not fully understood. In this study, we sought to identify shared mechanisms underlying antidepressant interventions. We studied three groups of mice: mice treated with a widely used antidepressant drug – fluoxetine, mice engaged in voluntary exercise, and mice living in an enriched environment. The hippocampi of treated mice were investigated at the molecular and cellular levels. Mice treated with fluoxetine and mice who exercised daily showed, not only similar antidepressant behavior, but also similar changes in gene expression and hippocampal neurons. These changes were not observed in mice with environmental enrichment. An increase in neurogenesis and dendritic spine density was observed following four weeks of fluoxetine treatment and voluntary exercise. A weighted gene co-expression network analysis revealed four different modules of co-expressed genes that were correlated with the antidepressant effect. This network analysis enabled us to identify genes involved in the molecular pathways underlying the effects of fluoxetine and exercise. The existence of both neuronal and gene expression changes common to antidepressant drug and exercise suggests a shared mechanism underlying their effect. Further studies of these findings may be used to uncover the molecular mechanisms of depression, and to identify new avenues of therapy

    Discovery and Follow-up of ASASSN-19dj: An X-ray and UV Luminous TDE in an Extreme Post-Starburst Galaxy

    Get PDF
    We present observations of ASASSN-19dj, a nearby tidal disruption event (TDE) discovered in the post-starburst galaxy KUG 0810+227 by the All-Sky Automated Survey for Supernovae (ASAS-SN) at a distance of d \simeq 98 Mpc. We observed ASASSN-19dj from -21 to 392 days relative to peak UV/optical emission using high-cadence, multi-wavelength spectroscopy and photometry. From the ASAS-SN gg-band data, we determine that the TDE began to brighten on 2019 February 6.8 and for the first 25 days the rise was consistent with a flux \propto t2t^2 power-law. ASASSN-19dj peaked in the UV/optical on 2019 March 6.5 (MJD = 58548.5) at a bolometric luminosity of L=(6.2±0.2)×1044 erg s1L = (6.2 \pm 0.2) \times 10^{44} \text{ erg s}^{-1}. Initially remaining roughly constant in X-rays and slowly fading in the UV/optical, the X-ray flux increased by over an order of magnitude \sim225 days after peak, resulting from the expansion of the X-ray emitting surface. The late-time X-ray emission is well-fit by a blackbody with an effective radius of 1×1012 cm\sim 1 \times 10^{12} \text{ cm} and a temperature of 6×105 K\sim 6 \times 10^{5} \text{ K}. Analysis of Catalina Real-Time Transient Survey images reveals a nuclear outburst roughly 14.5 years earlier with a smooth decline and a luminosity of LVL_V \geq 1.4×10431.4 \times 10^{43} erg s1^{-1}, although the nature of the flare is unknown. ASASSN-19dj occurred in the most extreme post-starburst galaxy yet to host a TDE, with Lick HδA\delta_{A} = 7.67±0.177.67 \pm 0.17 \AA.Comment: 25 pages, 14 figures. Will be submitted to MNRAS. For a short video description please see https://youtu.be/WjTZwO7vcF

    Type-Ia Supernova Rates to Redshift 2.4 from Clash: The Cluster Lensing and Supernova Survey with Hubble

    Get PDF
    We present the supernova (SN) sample and Type-Ia SN (SN Ia) rates from the Cluster Lensing And Supernova survey with Hubble (CLASH). Using the Advanced Camera for Surveys and the Wide Field Camera 3 on the Hubble Space Telescope (HST), we have imaged 25 galaxy-cluster fields and parallel fields of non-cluster galaxies. We report a sample of 27 SNe discovered in the parallel fields. Of these SNe, approximately 13 are classified as SN Ia candidates, including four SN Ia candidates at redshifts z greater than 1.2.We measure volumetric SN Ia rates to redshift 1.8 and add the first upper limit on the SN Ia rate in the range z greater than 1.8 and less than 2.4. The results are consistent with the rates measured by the HST/ GOODS and Subaru Deep Field SN surveys.We model these results together with previous measurements at z less than 1 from the literature. The best-fitting SN Ia delay-time distribution (DTD; the distribution of times that elapse between a short burst of star formation and subsequent SN Ia explosions) is a power law with an index of 1.00 (+0.06(0.09))/(-0.06(0.10)) (statistical) (+0.12/0.08) (systematic), where the statistical uncertainty is a result of the 68% and 95% (in parentheses) statistical uncertainties reported for the various SN Ia rates (from this work and from the literature), and the systematic uncertainty reflects the range of possible cosmic star-formation histories. We also test DTD models produced by an assortment of published binary population synthesis (BPS) simulations. The shapes of all BPS double-degenerate DTDs are consistent with the volumetric SN Ia measurements, when the DTD models are scaled up by factors of 3-9. In contrast, all BPS single-degenerate DTDs are ruled out by the measurements at greater than 99% significance level
    corecore