113 research outputs found

    Maximum Angle of Stability of a Wet Granular Pile

    Full text link
    Anyone who has built a sandcastle recognizes that the addition of liquid to granular materials increases their stability. However, measurements of this increased stability often conflict with theory and with each other [1-7]. A friction-based Mohr-Coulomb model has been developed [3,8]. However, it distinguishes between granular friction and inter-particle friction, and uses the former without providing a physical mechanism. Albert, {\em et al.} [2] analyzed the geometric stability of grains on a pile's surface. The frictionless model for dry particles is in excellent agreement with experiment. But, their model for wet grains overestimates stability and predicts no dependence on system size. Using the frictionless model and performing stability analysis within the pile, we reproduce the dependence of the stability angle on system size, particle size, and surface tension observed in our experiments. Additionally, we account for past discrepancies in experimental reports by showing that sidewalls can significantly increase the stability of granular material.Comment: 4 pages, 4 figure

    Local impact of perivascular plaques on cerebral blood flow dynamics in a transgenic mouse model of Alzheimer's disease.

    Get PDF
    Cerebrovascular pathology is closely coupled to cognitive function decline, as indicated by numerous studies at the system level. To better understand the mechanisms of this cognitive decline it is important to resolve how pathological changes in the vasculature - such as perivascular plaques - affect local cerebral blood flow dynamics. This issue is ideally studied in the intact brain at very high spatial resolution. Here, we describe initial results obtained by an approach based on in vivo observation by multi-photon microscopy of vascular plaques and local blood flow measurements in a transgenic mouse model engineered to express the human amyloid precursor protein with the Swedish and Arctic mutations. These mice exhibit a striking abundance of perivascular plaques in the cerebral cortex and are well suited to investigate vascular pathology in Alzheimer's disease

    The cuttlefish Sepia officinalis (Sepiidae, Cephalopoda) constructs cuttlebone from a liquid-crystal precursor

    Get PDF
    Cuttlebone, the sophisticated buoyancy device of cuttlefish, is made of extensive superposed chambers that have a complex internal arrangement of calcified pillars and organic membranes. It has not been clear how this structure is assembled. We find that the membranes result from a myriad of minor membranes initially filling the whole chamber, made of nanofibres evenly oriented within each membrane and slightly rotated with respect to those of adjacent membranes, producing a helical arrangement. We propose that the organism secretes a chitin-protein complex, which self-organizes layer-by-layer as a cholesteric liquid crystal, whereas the pillars are made by viscous fingering. The liquid crystallization mechanism permits us to homologize the elements of the cuttlebone with those of other coleoids and with the nacreous septa and the shells of nautiloids. These results challenge our view of this ultra-light natural material possessing desirable mechanical, structural and biological properties, suggesting that two self-organizing physical principles suffice to understand its formation.Spanish Ministerio de Ciencia e Innovacion [CGL2010-20748-CO2-01, CGL2013-48247-P, FIS2013-48444-C2-2-P]; Andalusian Consejeria de Innovacion Ciencia y Tecnologia [RNM6433]; (Sepiatech, PROMAR program) of the Portuguese Ministerio da Agricultura e do Mar, Portugal [31.03.05.FEP.002]; Junta de Andalucia [RNM363]; FP7 COST Action of the European Community. [TD0903]info:eu-repo/semantics/publishedVersio

    Wet Granular Materials

    Full text link
    Most studies on granular physics have focused on dry granular media, with no liquids between the grains. However, in geology and many real world applications (e.g., food processing, pharmaceuticals, ceramics, civil engineering, constructions, and many industrial applications), liquid is present between the grains. This produces inter-grain cohesion and drastically modifies the mechanical properties of the granular media (e.g., the surface angle can be larger than 90 degrees). Here we present a review of the mechanical properties of wet granular media, with particular emphasis on the effect of cohesion. We also list several open problems that might motivate future studies in this exciting but mostly unexplored field.Comment: review article, accepted for publication in Advances in Physics; tex-style change

    Bistability versus Bimodal Distributions in Gene Regulatory Processes from Population Balance

    Get PDF
    In recent times, stochastic treatments of gene regulatory processes have appeared in the literature in which a cell exposed to a signaling molecule in its environment triggers the synthesis of a specific protein through a network of intracellular reactions. The stochastic nature of this process leads to a distribution of protein levels in a population of cells as determined by a Fokker-Planck equation. Often instability occurs as a consequence of two (stable) steady state protein levels, one at the low end representing the “off” state, and the other at the high end representing the “on” state for a given concentration of the signaling molecule within a suitable range. A consequence of such bistability has been the appearance of bimodal distributions indicating two different populations, one in the “off” state and the other in the “on” state. The bimodal distribution can come about from stochastic analysis of a single cell. However, the concerted action of the population altering the extracellular concentration in the environment of individual cells and hence their behavior can only be accomplished by an appropriate population balance model which accounts for the reciprocal effects of interaction between the population and its environment. In this study, we show how to formulate a population balance model in which stochastic gene expression in individual cells is incorporated. Interestingly, the simulation of the model shows that bistability is neither sufficient nor necessary for bimodal distributions in a population. The original notion of linking bistability with bimodal distribution from single cell stochastic model is therefore only a special consequence of a population balance model

    Insights into the pathogenesis of vein graft disease: lessons from intravascular ultrasound

    Get PDF
    The success of coronary artery bypass grafting (CABG) is limited by poor long-term graft patency. Saphenous vein is used in the vast majority of CABG operations, although 15% are occluded at one year with as many as 50% occluded at 10 years due to progressive graft atherosclerosis. Intravascular ultrasound (IVUS) has greatly increased our understanding of this process. IVUS studies have shown that early wall thickening and adaptive remodeling of vein grafts occurs within the first few weeks post implantation, with these changes stabilising in angiographically normal vein grafts after six months. Early changes predispose to later atherosclerosis with occlusive plaque detectable in vein grafts within the first year. Both expansive and constrictive remodelling is present in diseased vein grafts, where the latter contributes significantly to occlusive disease. These findings correlate closely with experimental and clinicopathological studies and help define the windows for prevention, intervention or plaque stabilisation strategies. IVUS is also the natural tool for evaluating the effectiveness of pharmacological and other treatments that may prevent or slow the progression of vein graft disease in clinical trials

    Prospects for the development of probiotics and prebiotics for oral applications

    Get PDF
    There has been a paradigm shift towards an ecological and microbial community-based approach to understanding oral diseases. This has significant implications for approaches to therapy and has raised the possibility of developing novel strategies through manipulation of the resident oral microbiota and modulation of host immune responses. The increased popularity of using probiotic bacteria and/or prebiotic supplements to improve gastrointestinal health has prompted interest in the utility of this approach for oral applications. Evidence now suggests that probiotics may function not only by direct inhibition of, or enhanced competition with, pathogenic micro-organisms, but also by more subtle mechanisms including modulation of the mucosal immune system. Similarly, prebiotics could promote the growth of beneficial micro-organisms that comprise part of the resident microbiota. The evidence for the use of pro or prebiotics for the prevention of caries or periodontal diseases is reviewed, and issues that could arise from their use, as well as questions that still need to be answered, are raised. A complete understanding of the broad ecological changes induced in the mouth by probiotics or prebiotics will be essential to assess their long-term consequences for oral health and disease

    Hyponatremia in the intensive care unit: How to avoid a Zugzwang situation?

    Get PDF
    corecore