12,856 research outputs found
Calibration of the galaxy cluster M_500-Y_X relation with XMM-Newton
The quantity Y_ X, the product of the X-ray temperature T_ X and gas mass M_
g, has recently been proposed as a robust low-scatter mass indicator for galaxy
clusters. Using precise measurements from XMM-Newton data of a sample of 10
relaxed nearby clusters, spanning a Y_ X range of 10^13 -10^15 M_sun keV, we
investigate the M_500-Y_ X relation. The M_500 - Y_ X data exhibit a power law
relation with slope alpha=0.548 \pm 0.027, close to the self-similar value
(3/5) and independent of the mass range considered. However, the normalisation
is \sim 20% below the prediction from numerical simulations including cooling
and galaxy feedback. We discuss two effects that could contribute to the
normalisation offset: an underestimate of the true mass due to the HE
assumption used in X-ray mass estimates, and an underestimate of the hot gas
mass fraction in the simulations. A comparison of the functional form and
scatter of the relations between various observables and the mass suggest that
Y_ X may indeed be a better mass proxy than T_ X or M_g,500.Comment: 4 pages, 2 figures, accepted for publication in A&
Enhanced Polarized Emission from the One-Parsec-Scale Hotspot of 3C 84 as a Result of the Interaction with Clumpy Ambient Medium
We present Very Long Baseline Array polarimetric observations of the
innermost jet of 3C84 (NGC1275) at 43GHz. A significant
polarized emission is detected at the hotspot of the innermost re-started jet,
which is located 1 pc south from the radio core. While the previous
report presented a hotspot at the southern end of the western limb, the hotspot
location has been moved to the southern end of the eastern limb. Faraday
rotation is detected within an entire bandwidth of the 43-GHz band. The
measured rotation measure (RM) is at most
(6.31.9)radm and might be slightly time
variable on the timescale of a month by a factor of a few. Our measured RM and
the RM previously reported by the CARMA and SMA observations cannot be
consistently explained by the spherical accretion flow with a power-law
profile. We propose that a clumpy/inhomogeneous ambient medium is responsible
for the observed rotation measure. Using equipartition magnetic field, we
derive the electron density of cm. Such an electron
density is consistent with the cloud of narrow line emission region around the
central engine. We also discuss the magnetic field configuration from black
hole scale to pc scale and the origin of low polarization.Comment: 8 pages, 8 figures, accepted for publication in Ap
CMB Lensing Power Spectrum Biases from Galaxies and Clusters using High-angular Resolution Temperature Maps
The lensing power spectrum from cosmic microwave background (CMB) temperature
maps will be measured with unprecedented precision with upcoming experiments,
including upgrades to ACT and SPT. Achieving significant improvements in
cosmological parameter constraints, such as percent level errors on sigma_8 and
an uncertainty on the total neutrino mass of approximately 50 meV, requires
percent level measurements of the CMB lensing power. This necessitates tight
control of systematic biases. We study several types of biases to the
temperature-based lensing reconstruction signal from foreground sources such as
radio and infrared galaxies and the thermal Sunyaev-Zel'dovich effect from
galaxy clusters. These foregrounds bias the CMB lensing signal due to their
non-Gaussian nature. Using simulations as well as some analytical models we
find that these sources can substantially impact the measured signal if left
untreated. However, these biases can be brought to the percent level if one
masks galaxies with fluxes at 150 GHz above 1 mJy and galaxy clusters with
masses above M_vir = 10^14 M_sun. To achieve such percent level bias, we find
that only modes up to a maximum multipole of l_max ~ 2500 should be included in
the lensing reconstruction. We also discuss ways to minimize additional bias
induced by such aggressive foreground masking by, for example, exploring a
two-step masking and in-painting algorithm.Comment: 14 pages, 14 figures, to be submitted to Ap
Drift instability in the motion of a fluid droplet with a chemically reactive surface driven by Marangoni flow
We theoretically derive the amplitude equations for a self-propelled droplet
driven by Marangoni flow. As advective flow driven by surface tension gradient
is enhanced, the stationary state becomes unstable and the droplet starts to
move. The velocity of the droplet is determined from a cubic nonlinear term in
the amplitude equations. The obtained critical point and the characteristic
velocity are well supported by numerical simulations.Comment: 9 pages, 4 figure
ALMA polarization observations of the particle accelerators in the hot spot of the radio galaxy 3C 445
We present Atacama Large Millimeter Array (ALMA) polarization observations at
97.5 GHz of the southern hot spot of the radio galaxy 3C 445. The hot spot
structure is dominated by two bright components enshrouded by diffuse emission.
Both components show fractional polarization between 30 and 40 per cent,
suggesting the presence of shocks. The polarized emission of the western
component has a displacement of about 0.5 kpc outward with respect to the total
intensity emission, and may trace the surface of a front shock. Strong
polarization is observed in a thin strip marking the ridge of the hot spot
structure visible from radio to optical. No significant polarization is
detected in the diffuse emission between the main components, suggesting a
highly disordered magnetic field likely produced by turbulence and
instabilities in the downstream region that may be at the origin of the
extended optical emission observed in this hot spot. The polarization
properties support a scenario in which a combination of both multiple and
intermittent shock fronts due to jet dithering, and spatially distributed
stochastic second-order Fermi acceleration processes are present in the hot
spot complex.Comment: 5 pages, 3 figures; accepted for publication in MNRAS Lette
Tailoring Dielectric Properties of Multilayer Composites Using Spark Plasma Sintering
A straightforward and simple way to produce well-densified ferroelectric ceramic composites with a full control of both architecture and properties using spark plasma sintering (SPS) is proposed. SPS main outcome is indeed to obtain high densification at relatively low temperatures and short treatment times thus limiting interdiffusion in multimaterials. Ferroelectric/dielectric (BST64/MgO/BST64) multilayer ceramic densified at 97% was obtained, with unmodified Curie temperature, a stack dielectric constant reaching 600, and dielectric losses dropping down to 0.5%, at room-temperature. This result ascertains SPS as a relevant tool for the design of functional materials with tailored properties
Ablation of smooth muscle myosin heavy chain SM2 increases smooth muscle contractility and results in postnatal death in mice
The smooth muscle myosin heavy chains (SMHC) are motor proteins powering smooth muscle contraction. Alternate splicing of SHMC gene at the C-terminus produces SM1, and SM2 myosin isoforms; SM2 (200 kDa) contains a unique 9-amino-acid sequence at the carboxyl terminus, whereas SM1 (204 kDa) has a 43 amino acid non-helical tail region. To date the functional difference between C-terminal isoforms has not been established; therefore, we used an exon-specific gene targeting strategy and generated a mouse model specifically deficient in SM2. Deletion of exon-41 of the SMHC gene resulted in a complete loss of SM2 in homozygous (_SM2^-/-^_) mice, accompanied by a concomitant down-regulation of SM1 in bladders. While heterozygous (_SM2^+/-^_) mice appeared normal and fertile, _SM2^-/-^_ mice died within 30 days after birth. The peri-mortal _SM2^-/-^_ mice showed reduced body weight, distention of the bladder and alimentary tract, and end-stage hydronephrosis. Interestingly, strips from _SM2^-/-^_ bladders showed increased contraction to K^+^ depolarization or M3 receptor activation. These results suggest that SM2 myosin has a distinct functional role in smooth muscle, and the deficiency of SM2 increases smooth muscle contractility, and causes dysfunctions of smooth muscle organs, including the bladder that leads to the end-stage hydronephrosis and postnatal death
Analysis of electron-positron momentum spectra of metallic alloys as supported by first-principles calculations
Electron-positron momentum distributions measured by the coincidence Doppler
broadening method can be used in the chemical analysis of the annihilation
environment, typically a vacancy-impurity complex in a solid. In the present
work, we study possibilities for a quantitative analysis, i.e., for
distinguishing the average numbers of different atomic species around the
defect. First-principles electronic structure calculations self-consistently
determining electron and positron densities and ion positions are performed for
vacancy-solute complexes in Al-Cu, Al-Mg-Cu, and Al-Mg-Cu-Ag alloys. The
ensuing simulated coincidence Doppler broadening spectra are compared with
measured ones for defect identification. A linear fitting procedure, which uses
the spectra for positrons trapped at vacancies in pure constituent metals as
components, has previously been employed to find the relative percentages of
different atomic species around the vacancy [A. Somoza et al. Phys. Rev. B 65,
094107 (2002)]. We test the reliability of the procedure by the help of
first-principles results for vacancy-solute complexes and vacancies in
constituent metals.Comment: Submitted to Physical Review B on September 19 2006. Revised version
submitted on November 8 2006. Published on February 14 200
- …