17,293 research outputs found
Polio survivors’ perceptions of the meaning of quality of life and strategies used to promote participation in everyday activities
This article is made available through the Brunel Open Access Publishing Fund.Introduction: The term ‘post-polio syndrome’ (PPS) is used to describe new and late manifestations of poliomyelitis that occur later in life. Research in this area has focused upon health status rather than its effect on quality of life. Aim: To gain an in-depth understanding of the meaning of quality of life for polio survivors and to determine the type of strategies that are used by people with PPS and the support that they consider as important to facilitate participation in everyday life activities that have an impact on their quality of life. Method: Six focus groups were conducted with 51 participants from two regions in England. Data were audio-taped and analysed using thematic analysis. Results: Our research found that polio survivors used terms used to describe quality of life which could be associated with that of happiness. Our research has identified resolvable factors that influence quality of life namely inaccessible environments, attitudes of health-care professionals and societal attitudes. Polio survivors have tried alternative therapies, chiefly acupuncture and massage, and found them to be effective in enhancing their quality of life. Conclusion: It is suggested that health-care professionals should consider factors which influence happiness and implement a person-centred approach with the views of the polio survivor being listened to. The three factors that influenced quality of life could be resolved by health-care professionals and by society. With regard to strategies used, we suggest that polio survivors should have access to the treatments that they perceive as important, although further research is required to design optimal interventions for this client group
Quantum replica approach to the under-screened Kondo model
We extend the Schwinger boson large N treatment of the underscreened Kondo
model in a way that correctly captures the finite elastic phase shift in the
singular Fermi liquid. The new feature of the approach, is the introduction of
a flavor quantum number with K possible values, associated with the Schwinger
boson representation. The large N limit is taken maintaining the ratio k=K/N
fixed. This approach differs from previous approaches, in that we do not
explicitly enforce a constraint on the spin representation of the Schwinger
bosons. Instead, the energetics of the Kondo model cause the bosonic degrees of
freedom to ``self assemble'' into a ground-state in which the spins of K bosons
and N-K conduction electrons are antisymmetrically arranged into a Kondo
singlet. With this device, the large N limit can be taken, in such a way that a
fraction K/N of the Abrikosov Suhl resonance is immersed inside the Fermi sea.
We show how this method can be used to model the full energy dependence of the
singular Abrikosov Suhl resonance in the underscreened Kondo model and the
field-dependent magnetization.Comment: Revised draft, with plots explicitly showing logarithmic scaling of
inverse coupling constant. Small corrections prior to submission to journa
Personhood, consciousness, and god : how to be a proper pantheist
© Springer Nature B.V. 2018In this paper I develop a theory of personhood which leaves open the possibility of construing the universe as a person. If successful, it removes one bar to endorsing pantheism. I do this by examining a rising school of thought on personhood, on which persons, or selves, are understood as identical to episodes of consciousness. Through a critique of this experiential approach to personhood, I develop a theory of self as constituted of qualitative mental contents, but where these contents are also capable of unconscious existence. On this theory, though we can be conscious of our selves, consciousness turns out to be inessential to personhood. This move, I then argue, provides resources for responding to the pantheist’s problem of God’s person.Peer reviewedFinal Accepted Versio
Deconfined quantum criticality in the two dimensional Kondo lattice model
We investigate the continuous quantum phase transition from an
antiferromagnetic metal to a heavy fermion liquid based on the Kondo lattice
model in two dimensions. We propose that antiferromagnetic spin fluctuations
and conduction electrons fractionalize into neutral bosonic spinons and charged
spinless fermions at the quantum critical point. This deconfined quantum
criticality leads us to establish a critical field theory in terms of the
fractionalized fields interacting via emergent U(1) gauge fields. The critical
field theory not only predicts non-Fermi liquid physics near the quantum
critical point but also recovers Fermi liquid physics away from the quantum
critical point
Upper bound for the conductivity of nanotube networks
Films composed of nanotube networks have their conductivities regulated by
the junction resistances formed between tubes. Conductivity values are enhanced
by lower junction resistances but should reach a maximum that is limited by the
network morphology. By considering ideal ballistic-like contacts between
nanotubes we use the Kubo formalism to calculate the upper bound for the
conductivity of such films and show how it depends on the nanotube
concentration as well as on their aspect ratio. Highest measured conductivities
reported so far are approaching this limiting value, suggesting that further
progress lies with nanowires other than nanotubes.Comment: 3 pages, 1 figure. Minor changes. Accepted for publication in Applied
Physics Letter
Vacuum Decay in Theories with Symmetry Breaking by Radiative Corrections
The standard bounce formalism for calculating the decay rate of a metastable
vacuum cannot be applied to theories in which the symmetry breaking is due to
radiative corrections, because in such theories the tree-level action has no
bounce solutions. In this paper I derive a modified formalism to deal with such
cases. As in the usual case, the bubble nucleation rate may be written in the
form . To leading approximation, is the bounce action obtained by
replacing the tree-level potential by the leading one-loop approximation to the
effective potential, in agreement with the generally adopted {\it ad hoc}
remedy. The next correction to (which is proportional to an inverse power
of a small coupling) is given in terms of the next-to-leading term in the
effective potential and the leading correction to the two-derivative term in
the effective action. The corrections beyond these (which may be included in
the prefactor) do not have simple expressions in terms of the effective
potential and the other functions in the effective action. In particular, the
scalar-loop terms which give an imaginary part to the effective potential do
not explicitly appear; the corresponding effects are included in a functional
determinant which gives a manifestly real result for the nucleation rate.Comment: 39 pages, CU-TP-57
Schwinger Boson approach to the fully screened Kondo model
We apply the Schwinger boson scheme to the fully screened Kondo model and
generalize the method to include antiferromagnetic interactions between ions.
Our approach captures the Kondo crossover from local moment behavior to a Fermi
liquid with a non-trivial Wilson ratio. When applied to the two impurity model,
the mean-field theory describes the "Varma Jones" quantum phase transition
between a valence bond state and a heavy Fermi liquid.Comment: 4 pages, 4 figures. Changes to references and text in v
Chabauty-Coleman experiments for genus 3 hyperelliptic curves
We describe a computation of rational points on genus 3 hyperelliptic curves
defined over whose Jacobians have Mordell-Weil rank 1. Using
the method of Chabauty and Coleman, we present and implement an algorithm in
Sage to compute the zero locus of two Coleman integrals and analyze the finite
set of points cut out by the vanishing of these integrals. We run the algorithm
on approximately 17,000 curves from a forthcoming database of genus 3
hyperelliptic curves and discuss some interesting examples where the zero set
includes global points not found in .Comment: 18 page
On the Integrability of the Bukhvostov-Lipatov Model
The integrability of the Bukhvostov-Lipatov four-fermion model is
investigated. It is shown that the classical model possesses a current of
Lorentz spin 3, conserved both in the bulk and on the half-line for specific
types of boundary actions. It is then established that the conservation law is
spoiled at the quantum level -- a fact that might indicate that the quantum
Bukhvostov-Lipatov model is not integrable, contrary to what was previously
believed.Comment: 11 pages, 1 figure, LaTeX2e, AMS; new references adde
Braneworld Flattening by a Cosmological Constant
We present a model with an infinite volume bulk in which a braneworld with a
cosmological constant evolves to a static, 4-dimensional Minkowski spacetime.
This evolution occurs for a generic class of initial conditions with positive
energy densities. The metric everywhere outside the brane is that of a
5-dimensional Minkowski spacetime, where the effect of the brane is the
creation of a frame with a varying speed of light. This fact is encoded in the
structure of the 4-dimensional graviton propagator on the braneworld, which may
lead to some interesting Lorentz symmetry violating effects. In our framework
the cosmological constant problem takes a different meaning since the flatness
of the Universe is guaranteed for an arbitrary negative cosmological constant.
Instead constraints on the model come from different concerns which we discuss
in detail.Comment: 18 pages, 3 figures RevTe
- …