42 research outputs found
Monte Carlo Simulation of Flash Memory Elementsβ Electrophysical Parameters
Operation of modern flash memory elements is based on electron transport processes in the channel of silicon MOSFETs with floating gate. The aim of this work was calculation of electron mobility and study of the influence of phonon and ionized impurity scattering mechanisms on the mobility, as well as calculation of parasitic tunneling current and channel current in the conductive channel of flash memory element. Numerical simulation during the design stage of flash memory element allows working out guidelines for optimization of device parameters defining its performance and reliability. In the work such electrophysical parameters, characterizing electron transport, as mobility and average electron energy, as well as tunneling current and current in the channel of the flash memory element are studied via the numerical simulation by means of Monte Carlo method. Influence of phonon and ionized impurity scattering processes on electron mobility in the channel has been analyzed. It is shown that in the vicinity of drain region a sufficient decrease of electron mobility defined by phonon scattering processes occurs and the growth of parasitic tunneling current is observed which have a negative influence on device characteristics. The developed simulation program may be used in computer-aided design of flash memory elements for the purpose of their structure optimization and improvement of their electrical characteristics
ΠΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ»Π΅ΠΊΡΡΠΎΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² ΡΠ»Π΅Ρ-ΠΏΠ°ΠΌΡΡΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΠΎΠ½ΡΠ΅-ΠΠ°ΡΠ»ΠΎ
Operation of modern flash memory elements is based on electron transport processes in the channel of silicon MOSFETs with floating gate. The aim of this work was calculation of electron mobility and study of the influence of phonon and ionized impurity scattering mechanisms on the mobility, as well as calculation of parasitic tunneling current and channel current in the conductive channel of flash memory element. Numerical simulation during the design stage of flash memory element allows working out guidelines for optimization of device parameters defining its performance and reliability.In the work such electrophysical parameters, characterizing electron transport, as mobility and average electron energy, as well as tunneling current and current in the channel of the flash memory element are studied via the numerical simulation by means of Monte Carlo method. Influence of phonon and ionized impurity scattering processes on electron mobility in the channel has been analyzed. It is shown that in the vicinity of drain region a sufficient decrease of electron mobility defined by phonon scattering processes occurs and the growth of parasitic tunneling current is observed which have a negative influence on device characteristics.The developed simulation program may be used in computer-aided design of flash memory elements for the purpose of their structure optimization and improvement of their electrical characteristics.Π ΠΎΡΠ½ΠΎΠ²Π΅ ΡΡΠ½ΠΊΡΠΈΠΎΠ½ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ
ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² ΡΠ»Π΅Ρ-ΠΏΠ°ΠΌΡΡΠΈ Π»Π΅ΠΆΠ°Ρ ΠΏΡΠΎΡΠ΅ΡΡΡ ΠΏΠ΅ΡΠ΅Π½ΠΎΡΠ° ΡΠ»Π΅ΠΊΡΡΠΎΠ½ΠΎΠ² Π² ΠΏΡΠΎΠ²ΠΎΠ΄ΡΡΠ΅ΠΌ ΠΊΠ°Π½Π°Π»Π΅ ΠΊΡΠ΅ΠΌΠ½ΠΈΠ΅Π²ΡΡ
ΠΠΠ-ΡΡΠ°Π½Π·ΠΈΡΡΠΎΡΠΎΠ² Ρ ΠΏΠ»Π°Π²Π°ΡΡΠΈΠΌ Π·Π°ΡΠ²ΠΎΡΠΎΠΌ. Π¦Π΅Π»ΡΡ Π΄Π°Π½Π½ΠΎΠΉ ΡΠ°Π±ΠΎΡΡ ΡΠ²Π»ΡΠ»ΠΎΡΡ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²ΡΡΠΈΡΠ»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ° ΠΏΠΎ ΡΠ°ΡΡΡΡΡ ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½ΠΎΡΡΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΠ½ΠΎΠ² ΠΈ ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ Π²Π»ΠΈΡΠ½ΠΈΡ Π½Π° ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½ΠΎΡΡΡ ΡΠΎΠ½ΠΎΠ½Π½ΠΎΠ³ΠΎ ΡΠ°ΡΡΠ΅ΡΠ½ΠΈΡ ΠΈ ΡΠ°ΡΡΠ΅ΡΠ½ΠΈΡ Π½Π° ΠΈΠΎΠ½ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ ΠΏΡΠΈΠΌΠ΅ΡΠΈ, Π° ΡΠ°ΠΊΠΆΠ΅ ΡΠ°ΡΡΡΡ ΠΏΠ°ΡΠ°Π·ΠΈΡΠ½ΠΎΠ³ΠΎ ΡΡΠ½Π½Π΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΠΊΠ° ΠΈ ΡΠΎΠΊΠ° Π² ΠΏΡΠΎΠ²ΠΎΠ΄ΡΡΠ΅ΠΌ ΠΊΠ°Π½Π°Π»Π΅ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ° ΡΠ»Π΅Ρ-ΠΏΠ°ΠΌΡΡΠΈ. ΠΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²ΡΡΠΈΡΠ»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ° Π½Π° ΡΡΠ°ΠΏΠ΅ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠΈ ΠΈ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² ΡΠ»Π΅Ρ-ΠΏΠ°ΠΌΡΡΠΈ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ Π²ΡΡΠ°Π±ΠΎΡΠ°ΡΡ ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°ΡΠΈΠΈ Π΄Π»Ρ ΠΎΠΏΡΠΈΠΌΠΈΠ·Π°ΡΠΈΠΈ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² ΠΏΡΠΈΠ±ΠΎΡΠ°, ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡΠΈΡ
Π±ΡΡΡΡΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΠΈ Π½Π°Π΄ΡΠΆΠ½ΠΎΡΡΡ Π΅Π³ΠΎ ΡΠ°Π±ΠΎΡΡ.ΠΡΡΠ΅ΠΌ ΡΠΈΡΠ»Π΅Π½Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΏΠ΅ΡΠ΅Π½ΠΎΡΠ° Π² ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ΅ ΡΠ»Π΅Ρ-ΠΏΠ°ΠΌΡΡΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΠΎΠ½ΡΠ΅-ΠΠ°ΡΠ»ΠΎ ΡΠ°ΡΡΡΠΈΡΠ°Π½Ρ ΡΠ°ΠΊΠΈΠ΅ ΡΠ»Π΅ΠΊΡΡΠΎΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ, Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΡΡΡΠΈΠ΅ ΠΏΠ΅ΡΠ΅Π½ΠΎΡ, ΠΊΠ°ΠΊ ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½ΠΎΡΡΡ, ΡΡΠ΅Π΄Π½ΡΡ ΡΠ½Π΅ΡΠ³ΠΈΡ ΡΠ»Π΅ΠΊΡΡΠΎΠ½ΠΎΠ², Π° ΡΠ°ΠΊΠΆΠ΅ ΠΏΠ»ΠΎΡΠ½ΠΎΡΡΡ ΡΡΠ½Π½Π΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΠΊΠ° ΠΈ ΡΠΎΠΊΠ° Π² ΠΊΠ°Π½Π°Π»Π΅ ΠΏΡΠΈΠ±ΠΎΡΠ°. ΠΠ·ΡΡΠ΅Π½ΠΎ Π²Π»ΠΈΡΠ½ΠΈΠ΅ ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ² ΡΠ°ΡΡΠ΅ΡΠ½ΠΈΡ Π½Π° ΡΠΎΠ½ΠΎΠ½Π°Ρ
ΠΈ ΠΈΠΎΠ½ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ ΠΏΡΠΈΠΌΠ΅ΡΠΈ Π½Π° ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½ΠΎΡΡΡ ΡΠ»Π΅ΠΊΡΡΠΎΠ½ΠΎΠ² Π² ΠΊΠ°Π½Π°Π»Π΅. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ Π²Π±Π»ΠΈΠ·ΠΈ ΠΎΠ±Π»Π°ΡΡΠΈ ΡΡΠΎΠΊΠ° ΠΏΡΠΎΠΈΡΡ
ΠΎΠ΄ΠΈΡ ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ΅ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½ΠΎΡΡΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΠ½ΠΎΠ², ΠΎΠ±ΡΡΠ»ΠΎΠ²Π»Π΅Π½Π½ΠΎΠ΅ ΠΏΡΠΎΡΠ΅ΡΡΠ°ΠΌΠΈ ΡΠ°ΡΡΠ΅ΡΠ½ΠΈΡ Π½Π° ΡΠΎΠ½ΠΎΠ½Π°Ρ
, Π° ΡΠ°ΠΊΠΆΠ΅ Π½Π°Π±Π»ΡΠ΄Π°Π΅ΡΡΡ ΡΠΎΡΡ ΠΏΠ°ΡΠ°Π·ΠΈΡΠ½ΠΎΠ³ΠΎ ΡΡΠ½Π½Π΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΠΊΠ°, ΡΡΠΎ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ ΡΡ
ΡΠ΄ΡΠ΅Π½ΠΈΡ ΡΠ°Π±ΠΎΡΠΈΡ
Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊ ΠΏΡΠΈΠ±ΠΎΡΠ°.Π Π°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π½Π°Ρ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΠ° ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½Π° ΠΏΡΠΈ ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½ΠΎΠΌ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² ΡΠ»Π΅Ρ-ΠΏΠ°ΠΌΡΡΠΈ Ρ ΡΠ΅Π»ΡΡ ΠΎΠΏΡΠΈΠΌΠΈΠ·Π°ΡΠΈΠΈ ΠΈΡ
ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΈΠΈ ΠΈ ΡΠ»ΡΡΡΠ΅Π½ΠΈΡ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊ.
Plasmonic nanoparticle monomers and dimers: From nano-antennas to chiral metamaterials
We review the basic physics behind light interaction with plasmonic
nanoparticles. The theoretical foundations of light scattering on one metallic
particle (a plasmonic monomer) and two interacting particles (a plasmonic
dimer) are systematically investigated. Expressions for effective particle
susceptibility (polarizability) are derived, and applications of these results
to plasmonic nanoantennas are outlined. In the long-wavelength limit, the
effective macroscopic parameters of an array of plasmonic dimers are
calculated. These parameters are attributable to an effective medium
corresponding to a dilute arrangement of nanoparticles, i.e., a metamaterial
where plasmonic monomers or dimers have the function of "meta-atoms". It is
shown that planar dimers consisting of rod-like particles generally possess
elliptical dichroism and function as atoms for planar chiral metamaterials. The
fabricational simplicity of the proposed rod-dimer geometry can be used in the
design of more cost-effective chiral metamaterials in the optical domain.Comment: submitted to Appl. Phys.