225 research outputs found

    STUDIES OF SOLVENT EXTRACTION AND SUPPORTED LIQUID MEMBRANE WITH REACTIVE DYES FROM AQUEOUS SOLUTIONS USING ALIQUOT 336 AS CARRIER

    Get PDF
    The liquid-liquid extraction (LLE) and supported liquid membrane (SLM) studies of reactive dyes namely Gold Yellow (GYHE-R) and Reactive Green HE 4BD (RGHE-4BD) from aqueous solution using Aliquot 336 as the carrier has been investigated. Polytetrafluoroethylene (PTFE) membrane with 0.5 μm pore size has been used after impregnated with Aliquot 336 in dichloromethane. In liquid liquid extraction the following parameters had been optimized; pH of feed, diluent, carrier , strip and dye concentration and the same parameters have been applied to supported liquid membrane (SLM) study to transport dye from aqueous solution.The main advantages SLM study is; the extraction and stripping as single stage process and low consumption of carrier in the membrane phase compared to the solvent extraction process. The other parameters such as transport time, stirring speed and mechanism of dye transport has also studied by SLM. The percentage of transport of dye and flux rate increases with increasing time. The stability of membrane is satisfactory over 5 days

    Sustainable degradation of carbon tetrafluoride to non-corrosive useful products by incorporating reduced electron mediator within electro-scrubbing

    Get PDF
    The degradation of CF4 gas using existing technologies produces other types of greenhouse gas (CO2) and corrosive side products. The main aim of this study is to degrade CF4 gas at room temperature into useful products without producing corrosive side products by mediated electrochemical reduction (MER) process using an electrogenerated Cu1+[Ni2+(CN)4]1− mediator. Initial studies on the electrolytic reduction of the hetero-bimetallic complex in catholyte solution at anodized Ti cathode was monitored by oxidation/reduction potential (ORP) variation whether the Cu2+ or Ni2+ was reduced in the Cu2+[Ni2+(CN)4] and confirmed by electron spin resonance (ESR) spectroscopy the Cu1+[Ni2+(CN)4]1− formation. The concentration variation of Cu1+[Ni2+(CN)4]1− during CF4 injection demonstrated the degradation of CF4 followed the MER by electrogenerated Cu1+[Ni2+(CN)4]1−. Maximum removal efficiency of CF4 using electroscrubbing process was 96% at room temperature. Through the variation in gas phase parameters, the gas phase mass transfer coefficient was calculated that can facilitate scale up the developed process. Fourier transform infrared spectroscopy analysis in both the gas and solution phases showed that CH3CH2OH was the main product that formed during the removal of CF4 by electrogenerated Cu1+[Ni2+(CN)4]1− at electroscrubber along with a small amount of CF3CH3 intermediate. Importantly, this mechanism also avoided formation of the corrosive product HF

    Serum neurofilament levels reflect outer retinal layer changes in multiple sclerosis

    Get PDF
    Background:Serum neurofilament light chain (sNfL) and distinct intra-retinal layers are both promising biomarkers of neuro-axonal injury in multiple sclerosis (MS). We aimed to unravel the association of both markers in early MS, having identified that neurofilament has a distinct immunohistochemical expression pattern among intra-retinal layers. Methods:Three-dimensional (3D) spectral domain macular optical coherence tomography scans and sNfL levels were investigated in 156 early MS patients (female/male: 109/47, mean age: 33.3 ± 9.5 years, mean disease duration: 2.0 ± 3.3 years). Out of the whole cohort, 110 patients had no history of optic neuritis (NHON) and 46 patients had a previous history of optic neuritis (HON). In addition, a subgroup of patients (n = 38) was studied longitudinally over 2 years. Support vector machine analysis was applied to test a regression model for significant changes. Results:In our cohort, HON patients had a thinner outer plexiform layer (OPL) volume compared to NHON patients (B = −0.016, SE = 0.006, p = 0.013). Higher sNfL levels were significantly associated with thinner OPL volumes in HON patients (B = −6.734, SE = 2.514, p = 0.011). This finding was corroborated in the longitudinal subanalysis by the association of higher sNfL levels with OPL atrophy (B = 5.974, SE = 2.420, p = 0.019). sNfL levels were 75.7% accurate at predicting OPL volume in the supervised machine learning. Conclusions:In summary, sNfL levels were a good predictor of future outer retinal thinning in MS. Changes within the neurofilament-rich OPL could be considered as an additional retinal marker linked to MS neurodegeneration

    Structure of the lipoprotein lipase-GPIHBP1 complex that mediates plasma triglyceride hydrolysis

    Get PDF
    The intravascular processing of triglyceride-rich lipoproteins by the lipoprotein lipase (LPL)–GPIHBP1 complex is crucial for clearing triglycerides from the bloodstream and for the delivery of lipid nutrients to vital tissues. A deficiency of either LPL or GPIHBP1 impairs triglyceride processing, resulting in severe hypertriglyceridemia (chylomicronemia). Despite intensive investigation by biochemists worldwide, the structures for LPL and GPIHBP1 have remained elusive. Inspired by the recent discovery that GPIHBP1 stabilizes LPL structure and activity, we crystallized the LPL–GPIHBP1 complex and solved its structure. The structure provides insights into the ability of GPIHBP1 to preserve LPL structure and activity and also reveals how inherited defects in these proteins impair triglyceride hydrolysis and cause chylomicronemia

    Sustainable removal of N2O by mediated electrocatalytic reduction at ambient temperature electro-scrubbing using electrogenerated Ni(I) electron mediator

    Get PDF
    Direct catalysis is generally proposed for nitrous oxide (N2O) abatement but catalysis is expensive, requires high temperatures, and suffers from media fouling, which limits its lifetime. In the present study, an ambient temperature electroscrubbing method was developed, coupling wet-scrubbing with an electrogenerated Ni(I) ([Ni(I)(CN)4]3−) mediator, to enable N2O reduction in a single process stage. The initial studies of 10 ppm N2O absorption into 9 M KOH and an electrolyzed 9 M KOH solution showed no removal. However, 95% N2O removal was identified through the addition of Ni(I) to an electrolyzed 9 M KOH. A change in the oxidation/reduction potential from −850 mV to −650 mV occurred following a decrease in Ni(I) concentration from 4.6 mM to 4.0 mM, which confirmed that N2O removal was mediated by an electrocatalytic reduction (MER) pathway. Online analysis identified the reaction product to be ammonia (NH3). Increasing the feed N2O concentration increased NH3 formation, which suggests that a decrease in electrolyzed solution reactivity induced by the increased N2O load constrained the side reaction with the carrier gas. Importantly, this study outlines a new regenerable method for N2O removal to commodity product NH3 at ambient temperature that fosters process intensification, overcomes the limitations generally observed with catalysis, and permits product transformation to NH3

    Myelination- and immune-mediated MR-based brain network correlates

    Get PDF
    Background Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS), characterized by inflammatory and neurodegenerative processes. Despite demyelination being a hallmark of the disease, how it relates to neurodegeneration has still not been completely unraveled, and research is still ongoing into how these processes can be tracked non-invasively. Magnetic resonance imaging (MRI) derived brain network characteristics, which closely mirror disease processes and relate to functional impairment, recently became important variables for characterizing immune-mediated neurodegeneration; however, their histopathological basis remains unclear. Methods In order to determine the MRI-derived correlates of myelin dynamics and to test if brain network characteristics derived from diffusion tensor imaging reflect microstructural tissue reorganization, we took advantage of the cuprizone model of general demyelination in mice and performed longitudinal histological and imaging analyses with behavioral tests. By introducing cuprizone into the diet, we induced targeted and consistent demyelination of oligodendrocytes, over a period of 5 weeks. Subsequent myelin synthesis was enabled by reintroduction of normal food. Results Using specific immune-histological markers, we demonstrated that 2 weeks of cuprizone diet induced a 52% reduction of myelin content in the corpus callosum (CC) and a 35% reduction in the neocortex. An extended cuprizone diet increased myelin loss in the CC, while remyelination commenced in the neocortex. These histologically determined dynamics were reflected by MRI measurements from diffusion tensor imaging. Demyelination was associated with decreased fractional anisotropy (FA) values and increased modularity and clustering at the network level. MRI-derived modularization of the brain network and FA reduction in key anatomical regions, including the hippocampus, thalamus, and analyzed cortical areas, were closely related to impaired memory function and anxiety-like behavior. Conclusion Network-specific remyelination, shown by histology and MRI metrics, determined amelioration of functional performance and neuropsychiatric symptoms. Taken together, we illustrate the histological basis for the MRI-driven network responses to demyelination, where increased modularity leads to evolving damage and abnormal behavior in MS. Quantitative information about in vivo myelination processes is mirrored by diffusion-based imaging of microstructural integrity and network characteristics
    • …
    corecore